Skip to main content

Advertisement

Log in

Pharmacological and functional properties of TRPM8 channels in prostate tumor cells

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Prostate cancer (PC) is a major health problem in adult males. TRPM8, a cationic TRP channel activated by cooling and menthol is upregulated in PC. However, the precise role of TRPM8 in PC is still unclear. Some studies hypothesized that TRPM8-mediated transmembrane Ca2+ fluxes play a key role in cellular proliferation of PC cells. In contrast, other findings suggest that high TRPM8 levels may reduce the metastatic potential of PC cells. A detailed understanding of the response of TRPM8 channels to pharmacological modulators of their activity is relevant when considering potential therapies, targeting this ion channel to treat PC. We characterized the pharmacological and functional properties of native TRPM8 channels in four human prostate cell lines, PNT1A, LNCaP, DU145, and PC3, commonly used as experimental models of PC. PNT1A is a non-tumoral prostate cell line while the other three correspond to different stages of PC. Here, we show that cold- and agonist-evoked [Ca2+]i responses in PC cells are much less sensitive to well-characterized agonists (menthol and icilin) and antagonists (BCTC, clotrimazole, and DD01050) of TRPM8 channels, compared to TRPM8 channels in other tissues, suggesting a different molecular composition and/or spatial organization. In addition, the forced overexpression of human TRPM8 facilitated the trafficking of TRPM8 channels residing in the endoplasmic reticulum to the plasma membrane, leading to a marked potentiation in the efficacy of the different blockers. These results predict that blockers of canonical TRPM8 channels may be less effective in halting proliferation of PC cells than expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Zhang L, Barritt GJ (2006) TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocr Relat Cancer 13:27–38

    Article  PubMed  Google Scholar 

  3. Voets T, Owsianik G, Nilius B (2007) TRPM8. Handb Exp Pharmacol 179:329–344

    Article  CAS  PubMed  Google Scholar 

  4. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  CAS  PubMed  Google Scholar 

  5. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  6. Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    CAS  PubMed  Google Scholar 

  7. Fuessel S, Sickert D, Meye A, Klenk U, Schmidt U, Schmitz M, Rost AK, Weigle B, Kiessling A, Wirth MP (2003) Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. Int J Oncol 23:221–228

    CAS  PubMed  Google Scholar 

  8. Stein RJ, Santos S, Nagatomi J, Hayashi Y, Minnery BS, Xavier M, Patel AS, Nelson JB, Futrell WJ, Yoshimura N, Chancellor MB, De Miguel F (2004) Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J Urol 172:1175–1178

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Barritt GJ (2004) Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res 64:8365–8373

    Article  CAS  PubMed  Google Scholar 

  10. Bidaux G, Roudbaraki M, Merle C, Crepin A, Delcourt P, Slomianny C, Thebault S, Bonnal JL, Benahmed M, Cabon F, Mauroy B, Prevarskaya N (2005) Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement. Endocr Relat Cancer 12:367–382

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt U, Fuessel S, Koch R, Baretton GB, Lohse A, Tomasetti S, Unversucht S, Froehner M, Wirth MP, Meye A (2006) Quantitative multi-gene expression profiling of primary prostate cancer. Prostate 66:1521–1534

    Article  CAS  PubMed  Google Scholar 

  12. Yamamura H, Ugawa S, Ueda T, Morita A, Shimada S (2008) TRPM8 activation suppresses cellular viability in human melanoma. Am J Physiol Cell Physiol 295:C296–C301

    Article  CAS  PubMed  Google Scholar 

  13. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530

    Article  CAS  PubMed  Google Scholar 

  14. Prevarskaya N, Flourakis M, Bidaux G, Thebault S, Skryma R (2007) Differential role of TRP channels in prostate cancer. Biochem Soc Trans 35:133–135

    Article  CAS  PubMed  Google Scholar 

  15. Kim SH, Nam JH, Park EJ, Kim BJ, Kim SJ, So I, Jeon JH (2009) Menthol regulates TRPM8-independent processes in PC-3 prostate cancer cells. Biochim Biophys Acta 1792:33–38

    CAS  PubMed  Google Scholar 

  16. Gkika D, Flourakis M, Lemonnier L, Prevarskaya N (2010) PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. Oncogene 29:4611–4616

    Article  CAS  PubMed  Google Scholar 

  17. Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A, Gordienko D, Roudbaraki M, Delcourt P, Panchin Y, Shuba Y, Skryma R, Prevarskaya N (2005) Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem 280:39423–39435

    Article  CAS  PubMed  Google Scholar 

  18. Mahieu F, Owsianik G, Verbert L, Janssens A, De Smedt H, Nilius B, Voets T (2007) TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem 282:3325–3336

    Article  CAS  PubMed  Google Scholar 

  19. Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, Skryma R, Prevarskaya N (2007) Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest 117:1647–1657

    Article  CAS  PubMed  Google Scholar 

  20. Lis A, Wissenbach U, Philipp SE (2005) Transcriptional regulation and processing increase the functional variability of TRPM channels. Naunyn Schmiedebergs Arch Pharmacol 371:315–324

    Article  CAS  PubMed  Google Scholar 

  21. Madrid R, Donovan-Rodriguez T, Meseguer V, Acosta MC, Belmonte C, Viana F (2006) Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 26:12512–12525

    Article  CAS  PubMed  Google Scholar 

  22. Malkia A, Madrid R, Meseguer V, de la Peña E, Valero M, Belmonte C, Viana F (2007) Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 581:155–174

    Article  CAS  PubMed  Google Scholar 

  23. Malkia A, Pertusa M, Fernandez-Ballester G, Ferrer-Montiel A, Viana F (2009) Differential role of the menthol-binding residue Y745 in the antagonism of thermally gated TRPM8 channels. Mol Pain 5:62

    Article  PubMed  Google Scholar 

  24. Meseguer V, Karashima Y, Talavera K, D'Hoedt D, Donovan-Rodriguez T, Viana F, Nilius B, Voets T (2008) Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole. J Neurosci 28:576–586

    Article  CAS  PubMed  Google Scholar 

  25. Viana F, de la Pena E, Pecson B, Schmidt RF, Belmonte C (2001) Swelling-activated calcium signalling in cultured mouse primary sensory neurons. Eur J Neurosci 13:722–734

    Article  CAS  PubMed  Google Scholar 

  26. Bodding M, Wissenbach U, Flockerzi V (2007) Characterisation of TRPM8 as a pharmacophore receptor. Cell Calcium 42:618–628

    Article  PubMed  Google Scholar 

  27. Garcia-Sanz N, Valente P, Gomis A, Fernandez-Carvajal A, Fernandez-Ballester G, Viana F, Belmonte C, Ferrer-Montiel A (2007) A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J Neurosci 27:11641–11650

    Article  CAS  PubMed  Google Scholar 

  28. Reid G, Amuzescu B, Zech E, Flonta M (2001) A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging. J Neurosci Methods 111:1–8

    Article  CAS  PubMed  Google Scholar 

  29. Di Virgilio F, Steinberg TH, Silverstein SC (1990) Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 11:57–62

    Article  PubMed  Google Scholar 

  30. Garcia-Martinez C, Fernandez-Carvajal A, Valenzuela B, Gomis A, Van Den NW, Ferroni S, Carreno C, Belmonte C, Ferrer-Montiel A (2006) Design and characterization of a noncompetitive antagonist of the transient receptor potential vanilloid subunit 1 channel with in vivo analgesic and anti-inflammatory activity. J Pain 7:735–746

    Article  CAS  PubMed  Google Scholar 

  31. Morenilla-Palao C, Pertusa M, Meseguer V, Cabedo H, Viana F (2009) Lipid raft segregation modulates TRPM8 channel activity. J Biol Chem 284:9215–9224

    Article  CAS  PubMed  Google Scholar 

  32. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R (2004) Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141:737–745

    Article  CAS  PubMed  Google Scholar 

  33. Lehen'kyi V, Flourakis M, Skryma R, Prevarskaya N (2007) TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 26:7380–7385

    Article  PubMed  Google Scholar 

  34. Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL (2002) The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 4:E263–E272

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Martinez C, Humet M, Planells-Cases R, Gomis A, Caprini M, Viana F, de la Peña E, Sanchez-Baeza F, Carbonell T, De Felipe C, Perez-Paya E, Belmonte C, Messeguer A, Ferrer-Montiel A (2002) Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proc Natl Acad Sci USA 99:2374–2379

    Article  CAS  PubMed  Google Scholar 

  36. Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta 1772:937–946

    CAS  PubMed  Google Scholar 

  37. Wissenbach U, Niemeyer BA, Flockerzi V (2004) TRP channels as potential drug targets. Biol Cell 96:47–54

    Article  CAS  PubMed  Google Scholar 

  38. Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D (2006) DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett 580:2294–2300

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell S, Abel P, Ware M, Stamp G, Lalani E (2000) Phenotypic and genotypic characterization of commonly used human prostatic cell lines. BJU Int 85:932–944

    Article  CAS  PubMed  Google Scholar 

  40. Sigal A, Milo R, Cohen A, Geva-Zatorsky N, Klein Y, Liron Y, Rosenfeld N, Danon T, Perzov N, Alon U (2006) Variability and memory of protein levels in human cells. Nature 444:643–646

    Article  CAS  PubMed  Google Scholar 

  41. Reid G, Flonta ML (2001) Physiology. Cold current in thermoreceptive neurons. Nature 413:480

    Article  CAS  PubMed  Google Scholar 

  42. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    Article  CAS  PubMed  Google Scholar 

  43. Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157

    Article  CAS  PubMed  Google Scholar 

  44. Ding Y, Robbins J, Fraser SP, Grimes JA, Djamgoz MB (2006) Comparative studies of intracellular Ca2+ in strongly and weakly metastatic rat prostate cancer cell lines. Int J Biochem Cell Biol 38:366–375

    Article  CAS  PubMed  Google Scholar 

  45. Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H (2003) Expression of the Ca2 + -selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22:7858–7861

    Article  CAS  PubMed  Google Scholar 

  46. Flourakis M, Prevarskaya N (2009) Insights into Ca2+ homeostasis of advanced prostate cancer cells. Biochim Biophys Acta 1793:1105–1109

    Article  CAS  PubMed  Google Scholar 

  47. Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V (2004) TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun 322:1359–1363

    Article  CAS  PubMed  Google Scholar 

  48. Vanden Abeele F, Shuba Y, Roudbaraki M, Lemonnier L, Vanoverberghe K, Mariot P, Skryma R, Prevarskaya N (2003) Store-operated Ca2+ channels in prostate cancer epithelial cells: function, regulation, and role in carcinogenesis. Cell Calcium 33:357–373

    Article  CAS  PubMed  Google Scholar 

  49. Wertz IE, Dixit VM (2000) Characterization of calcium release-activated apoptosis of LNCaP prostate cancer cells. J Biol Chem 275:11470–11477

    Article  CAS  PubMed  Google Scholar 

  50. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  51. Gutierrez AA, Arias JM, Garcia L, Mas-Oliva J, Guerrero-Hernandez A (1999) Activation of a Ca2 + -permeable cation channel by two different inducers of apoptosis in a human prostatic cancer cell line. J Physiol 517(Pt 1):95–107

    Article  CAS  PubMed  Google Scholar 

  52. Martikainen P, Isaacs J (1990) Role of calcium in the programmed death of rat prostatic glandular cells. Prostate 17:175–187

    Article  CAS  PubMed  Google Scholar 

  53. Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276:19461–19468

    Article  CAS  PubMed  Google Scholar 

  54. Pandiella A, Magni M, Lovisolo D, Meldolesi J (1989) The effect of epidermal growth factor on membrane potential. Rapid hyperpolarization followed by persistent fluctuations. J Biol Chem 264:12914–12921

    CAS  PubMed  Google Scholar 

  55. Vanden Abeele F, Lemonnier L, Thebault S, Lepage G, Parys JB, Shuba Y, Skryma R, Prevarskaya N (2004) Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J Biol Chem 279:30326–30337

    Article  CAS  PubMed  Google Scholar 

  56. Armstrong AJ, Carducci MA (2006) New drugs in prostate cancer. Curr Opin Urol 16:138–145

    Article  PubMed  Google Scholar 

  57. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    Article  CAS  PubMed  Google Scholar 

  58. Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–25672

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank E. Quintero, A. Miralles, and A. Pérez-Vegara for their excellent technical assistance and G. Exposito for her help with confocal microscopy analysis. The human TRPM8 cDNAs was a generous gift of Dr. V. Flockerzi (University Homburg-Saar, Germany). We thank A. Ferrer-Montiel for the gift of DD01050 and B. Nilius (KULeuven) for the gift of the human TRPM8-specific antibody. We thank M. Pertusa and L. Pardo for comments on the manuscript. This work was supported by funds from the Spanish MICIIN: projects BFU2007-61855 to F.V and BFU2008-04425 and CONSOLIDER-INGENIO 2010 CSD2007-00023 to C.B. M.V. was the recipient of a predoctoral fellowship of the Spanish Government and C.M. holds a postdoctoral fellowship from FIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Viana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valero, M., Morenilla-Palao, C., Belmonte, C. et al. Pharmacological and functional properties of TRPM8 channels in prostate tumor cells. Pflugers Arch - Eur J Physiol 461, 99–114 (2011). https://doi.org/10.1007/s00424-010-0895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0895-0

Keywords

Navigation