Skip to main content
Log in

Abstract

Endogenous Ca2+-activated Cl channels (CaCC) demonstrate biophysical and pharmacological properties that are well represented in cells overexpressing anoctamin 1 (Ano 1, TMEM16A), a protein that has been identified recently as CaCC. Proteins of the anoctamin family (anoctamin 1–10, TMEM16A-K) are widely expressed. The number of reports demonstrating their physiological and clinical relevance is quickly rising. Anoctamins gain additional interest through their potential role in cell volume regulation and malignancy. Available data suggest that Ano 1 forms stable dimers and probably liaise with accessory proteins such as calmodulin or other anoctamins. In order to understand how anoctamins produce Ca2+-activated Cl currents, it will be necessary to obtain better insight into their molecular structure, interactions with partner proteins, and mode of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Almaca J, Tian Y, AlDehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber R, Kunzelmann K (2009) TMEM16 proteins produce volume regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 284:28571–28578

    Article  PubMed  CAS  Google Scholar 

  2. Anderson MP, Welsh MJ (1991) Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci USA 88:6003–6007

    Article  PubMed  CAS  Google Scholar 

  3. Ardeleanu C, Arsene D, Hinescu M, Andrei F, Gutu D, Luca L, Popescu LM (2009) Pancreatic expression of DOG1: a novel gastrointestinal stromal tumor (GIST) biomarker. Appl Immunohistochem Mol Morphol 17:413–418

    Article  PubMed  CAS  Google Scholar 

  4. Ayoub C, Wasylyk C, Li Y, Thomas E, Marisa L, Robe A, Roux M, Abecassis J, de Reynies A, Wasylyk B (2010) ANO 1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br J Cancer 103:715–726

    Article  PubMed  CAS  Google Scholar 

  5. Ball JM, Tian P, Zeng CQ, Morris AP, Estes MK (1996) Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272:101–104

    Article  PubMed  CAS  Google Scholar 

  6. Bera TK, Das S, Maeda H, Beers R, Wolfgang CD, Kumar V, Hahn Y, Lee B, Pastan I (2004) NGEP, a gene encoding a membrane protein detected only in prostate cancer and normal prostate. Proc Natl Acad Sci USA 101:3059–3064

    Article  PubMed  CAS  Google Scholar 

  7. Bergmann F, Andrulis M, Hartwig W, Penzel R, Gaida MM, Herpel E, Schirmacher P, and Mechtersheimer G (2011) Discovered on gastrointestinal stromal tumor 1 (DOG1) is expressed in pancreatic centroacinar cells and in solid-pseudopapillary neoplasms-novel evidence for a histogenetic relationship. Hum Pathol (in press)

  8. Billig GM, Pál B, Fidzinski P, and Jentsch TJ (2011) Ca2+−activated Cl- currents are dispensable for olfaction. Nature Neurosc (in press)

  9. Bolduc V, Marlow G, Boycott KM, Saleki K, Inoue H, Kroon J, Itakura M, Robitaille Y, Parent L, Baas F, Mizuta K, Kamata N, Richard I, Linssen WH, Mahjneh I, de Visser M, Bashir R, Brais B (2010) Recessive mutations in the putative calcium-activated chloride channel anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 86:213–221

    Article  PubMed  CAS  Google Scholar 

  10. Bove PF, Grubb BR, Okada SF, Ribeiro CM, Rogers TD, Randell SH, O'Neal WK, Boucher RC (2010) Human alveolar type II cells secrete and absorb liquid in response to local nucleotide signaling. J Biol Chem 285:34939–34949

    Article  PubMed  CAS  Google Scholar 

  11. Brown DA, Passmore GM (2010) Some new insights into the molecular mechanisms of pain perception. J Clin Invest 120:1380–1383

    Article  PubMed  CAS  Google Scholar 

  12. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  PubMed  CAS  Google Scholar 

  13. Carles A, Millon R, Cromer A, Ganguli G, Lemaire F, Young J, Wasylyk C, Muller D, Schultz I, Rabouel Y, Dembele D, Zhao C, Marchal P, Ducray C, Bracco L, Abecassis J, Poch O, Wasylyk B (2006) Head and neck squamous cell carcinoma transcriptome analysis by comprehensive validated differential display. Oncogene 25:1821–1831

    Article  PubMed  CAS  Google Scholar 

  14. Carneiro A, Isinger A, Karlsson A, Johansson J, Jonsson G, Bendahl PO, Falkenback D, Halvarsson B, Nilbert M (2008) Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. BMC Cancer 8:98

    Article  PubMed  CAS  Google Scholar 

  15. Castoldi E, Collins PW, Williamson PL, Bevers EM (2011) Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome. Blood 117:4399–4400

    Article  PubMed  CAS  Google Scholar 

  16. Chappe V, Hinkson DA, Zhu T, Chang XB, Riordan JR, Hanrahan JW (2003) Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J Physiol 548:39–52

    Article  PubMed  CAS  Google Scholar 

  17. Chen Y, An H, Li T, Liu Y, Gao C, Guo P, Zhang H, and Zhan Y (2011) Direct or Indirect Regulation of Calcium-Activated Chloride Channel by Calcium. J Membr Biol (in press)

  18. Clarke LL, Burns KA, Bayle JY, Boucher RC, Van Scott MR (1992) Sodium- and chloride-conductive pathways in cultured mouse tracheal epithelium. Am J Physiol 263:L519–L525

    PubMed  CAS  Google Scholar 

  19. Das S, Hahn Y, Walker DA, Nagata S, Willingham MC, Peehl DM, Bera TK, Lee B, Pastan I (2008) Topology of NGEP, a prostate-specific cell:cell junction protein widely expressed in many cancers of different grade level. Cancer Res 68:6306–6312

    Article  PubMed  CAS  Google Scholar 

  20. Davis AJ, Forrest AS, Jepps TA, Valencik ML, Wiwchar M, Singer CA, Sones WR, Greenwood IA, Leblanc N (2010) Expression profile and protein translation of TMEM16A in murine smooth muscle. Am J Physiol Cell Physiol 299:C948–C959

    Article  PubMed  CAS  Google Scholar 

  21. Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    PubMed  CAS  Google Scholar 

  22. Dutertre M, Lacroix-Triki M, Driouch K, de la Grange P, Gratadou L, Beck S, Millevoi S, Tazi J, Lidereau R, Vagner S, Auboeuf D (2010) Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis. Cancer Res 70:896–905

    Article  PubMed  CAS  Google Scholar 

  23. Dutta AK, Khimji AK, Kresge C, Bugde A, Dougherty M, Esser V, Ueno Y, Glaser SS, Alpini G, Rockey DC, Feranchak AP (2010) Identification and functional characterization of TMEM16A, a Ca2+-activated Cl channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem 286:766–776

    Article  PubMed  CAS  Google Scholar 

  24. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  PubMed  CAS  Google Scholar 

  25. Eggermont J (2004) Calcium-activated chloride channels: (un)known, (un)loved? Proc Am Thorac Soc 1:22–27

    Article  PubMed  CAS  Google Scholar 

  26. Espinosa I, Lee CH, Kim MK, Rouse BT, Subramanian S, Montgomery K, Varma S, Corless CL, Heinrich MC, Smith KS, Wang Z, Rubin B, Nielsen TO, Seitz RS, Ross DT, West RB, Cleary ML, van de Rijn M (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32:210–218

    Article  PubMed  Google Scholar 

  27. Fahlke C, Knittle T, Gurnett CA, Campbell KP, George AL Jr (1997) Subunit stoichiometry of human muscle chloride channels. J Gen Physiol 109:93–104

    Article  PubMed  CAS  Google Scholar 

  28. Fallah G, Roemer T, Detro-Dassen S, Braam U, Markwardt F, Schmalzing G (2010) TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels. Mol Cell Proteomics 79:649–661

    Google Scholar 

  29. Faria D, Schreiber R, Kunzelmann K (2009) CFTR is activated through stimulation of purinergic P2Y2 receptors. Pflügers Arch 457:1373–1380

    Article  PubMed  CAS  Google Scholar 

  30. Ferrera L, Caputo A, Galietta LJ (2010) TMEM16A protein: a new identity for Ca(2+)-dependent Cl channels. Physiology (Bethesda) 25:357–363

    CAS  Google Scholar 

  31. Ferrera L, Caputo A, Ubby I, Bussani E, Zegarra-Moran O, Ravazzolo R, Pagani F, Galietta LJ (2009) Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 284:33360–33368

    Article  PubMed  CAS  Google Scholar 

  32. Ferrera L, Scudieri P, Sondo E, Pedemonte N, Caci E, Ubby I, Pagani F, and Galietta LJ (2011) Native calcium activated chloride channels and their association with TMEM16A protein expression. 8th ECFS Basic Science Conference, 30 March–2 April, Tirennia, Italy (Abstract)

  33. Fischer H, Illek B, Sachs L, Finkbeiner WE, Widdicombe JH (2010) CFTR and Ca-activated Cl channels in primary cultures of human airway gland cells of serous or mucous phenotype. Am J Physiol Lung Cell Mol Physiol 299:L585–L594

    Article  PubMed  CAS  Google Scholar 

  34. Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+-activated Cl channels—homing in on an elusive channel species. Prog Neurobiol 60:247–289

    Article  PubMed  CAS  Google Scholar 

  35. Galietta LJ (2009) The TMEM16 protein family: a new class of chloride channels? Biophys J 97:3047–3053

    Article  PubMed  CAS  Google Scholar 

  36. Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, van de Rijn M, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW, Ordog T, Farrugia G (2009) Ano 1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 296:G1370–G1381

    Article  PubMed  CAS  Google Scholar 

  37. Gritli-Linde A, Vaziri SF, Rock JR, Hallberg K, Iribarne D, Harfe BD, Linde A (2009) Expression patterns of the Tmem16 gene family during cephalic development in the mouse. Gene Expr Patterns 9:178–191

    Article  PubMed  CAS  Google Scholar 

  38. Hartzell HC, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  PubMed  CAS  Google Scholar 

  39. He Q, Halm ST, Zhang J, Halm DR (2011) Activation of the basolateral membrane Cl conductance essential for electrogenic K secretion suppresses electrogenic Cl secretion. Exp Physiol 96:305–316

    PubMed  CAS  Google Scholar 

  40. Hengl T, Kaneko H, Dauner K, Vocke K, Frings S, Mohrlen F (2010) Molecular components of signal amplification in olfactory sensory cilia. Proc Natl Acad Sci U S A 107:6052–6057

    Article  PubMed  CAS  Google Scholar 

  41. Hicks D, Sarkozy A, Muelas N, Koehler K, Huebner A, Hudson G, Chinnery PF, Barresi R, Eagle M, Polvikoski T, Bailey G, Miller J, Radunovic A, Hughes PJ, Roberts R, Krause S, Walter MC, Laval SH, Straub V, Lochmuller H, Bushby K (2011) A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain 134:171–182

    Article  PubMed  Google Scholar 

  42. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A 106:21413–21418

    Article  PubMed  CAS  Google Scholar 

  43. Huang X, Godfrey TE, Gooding WE, McCarty KS Jr, Gollin SM (2006) Comprehensive genome and transcriptome analysis of the 11q13 amplicon in human oral cancer and synteny to the 7F5 amplicon in murine oral carcinoma. Genes Chromosomes Cancer 45:1058–1069

    Article  PubMed  CAS  Google Scholar 

  44. Hwang SJ, Blair PJ, Britton FC, O'Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587:4887–4904

    Article  PubMed  CAS  Google Scholar 

  45. Ji J, Zheng PS (2010) Activation of mTOR signaling pathway contributes to survival of cervical cancer cells. Gynecol Oncol 117:103–108

    Article  PubMed  CAS  Google Scholar 

  46. Kalay E, Caylan R, Kiroglu AF, Yasar T, Collin RW, Heister JG, Oostrik J, Cremers CW, Brunner HG, Karaguzel A, Kremer H (2007) A novel locus for autosomal recessive nonsyndromic hearing impairment, DFNB63, maps to chromosome 11q13.2–q13.4. J Mol Med 85:397–404

    Article  PubMed  CAS  Google Scholar 

  47. Katoh M, Katoh M (2004) Characterization of human TMEM16G gene in silico. Int J Mol Med 14:759–764

    PubMed  CAS  Google Scholar 

  48. Kidd JF, Thorn P (2000) Intracellular Ca2+ and Cl channel activation in secretory cells. Annu Rev Physiol 62:493–513

    Article  PubMed  CAS  Google Scholar 

  49. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  PubMed  CAS  Google Scholar 

  50. Kunzelmann K, Allert N, Kubitz R, Breuer WV, Cabantchik ZI, Normann C, Schumann S, Leipziger J, Greger R (1994) Forskolin- and PMA-pretreatment alter the acute electrical response of HT29 cells to cAMP, ATP, neurotensin, ionomycin and hypotonic cell swelling. Pflügers Arch 428:76–83

    Article  PubMed  CAS  Google Scholar 

  51. Kunzelmann K, Kongsuphol P, AlDehni F, Tian Y, Ousingsawat J, Warth R, Schreiber R (2009) Bestrophin and TMEM16—Ca2+ activated Cl channels with different functions. Cell Calcium 46:233–241

    Article  PubMed  CAS  Google Scholar 

  52. Kunzelmann K, Kongsuphol P, Chootip K, Toledo C, Martins JR, Almaca J, Tian Y, Witzgall R, Ousingsawat J, Schreiber R (2011) Role of the Ca(2+)-activated Cl(−) channels bestrophin and anoctamin in epithelial cells. Biol Chem 392:125–134

    Article  PubMed  CAS  Google Scholar 

  53. Kunzelmann K, Mall M (2002) Electrolyte transport in the colon: mechanisms and implications for disease. Physiol Rev 82:245–289

    PubMed  CAS  Google Scholar 

  54. Kunzelmann K, Mall M, Briel M, Hipper A, Nitschke R, Ricken S, Greger R (1997) The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl conductance in Xenopus ooyctes. Pflügers Arch 434:178–181

    Article  Google Scholar 

  55. Kunzelmann K, Milenkovic VM, Spitzner M, Barro Soria R, Schreiber R (2007) Calcium dependent chloride conductance in epithelia: is there a contribution by bestrophin? Pflügers Arch 454:879–889

    Article  PubMed  CAS  Google Scholar 

  56. Kunzelmann K, Schreiber R (1999) CFTR, a regulator of channels. J Membr Biol 168:1–8

    Article  PubMed  CAS  Google Scholar 

  57. Lalonde MR, Kelly ME, Barnes S (2008) Calcium-activated chloride channels in the retina. Channels (Austin) 2:252–260

    Google Scholar 

  58. Leblanc N, Ledoux J, Saleh S, Sanguinetti A, Angermann J, O'Driscoll KE, Britton F, Perrino BA, Greenwood IA (2005) Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging. Can J Physiol Pharmacol 83:541–556

    Article  PubMed  CAS  Google Scholar 

  59. Lee RJ, Foskett JK (2009) Mechanisms of Ca2+-stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells. Am J Physiol Lung Cell Mol Physiol 298:L210–L231

    Article  PubMed  CAS  Google Scholar 

  60. Liu B, Linley JE, Du X, Zhang X, Ooi L, Zhang H, Gamper N (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl channels. J Clin Invest 120:1240–1252

    Article  PubMed  CAS  Google Scholar 

  61. Lorrot M, Vasseur M (2007) How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J 4:31

    Article  PubMed  CAS  Google Scholar 

  62. Ludewig U, Pusch M, Jentsch TJ (1996) Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature 383:340–343

    Article  PubMed  CAS  Google Scholar 

  63. Mahjneh I, Jaiswal J, Lamminen A, Somer M, Marlow G, Kiuru-Enari S, Bashir R (2010) A new distal myopathy with mutation in anoctamin 5. Neuromuscul Disord 20:791–795

    Article  PubMed  Google Scholar 

  64. Mall M, Bleich M, Greger R, Schürlein M, Kühr J, Seydewitz HH, Brandis M, Kunzelmann K (1998) Cholinergic ion secretion in human colon requires co-activation by cAMP. Am J Physiol 275:G1274–G1281

    PubMed  CAS  Google Scholar 

  65. Manoury B, Tamuleviciute A, Tammaro P (2010) TMEM16A/Anoctamin1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells. J Physiol 588:2305–2314

    Article  PubMed  CAS  Google Scholar 

  66. Martins JR, Kongsuphol P, Sammels E, AlDehni F, Clarke L, Schreiber R, De Smedt H, Amaral MD, Kunzelmann K (2011) F508del-CFTR increases intracellular Ca2+ signaling that causes enhanced calcium-dependent Cl conductance in cystic fibrosis. Acta physiol Scand (abtract) 201S682:P271

    Google Scholar 

  67. Mazzone A, Bernard CE, Strege PR, Beyder A, Galietta LJ, Pasricha PJ, Rae JL, Parkman HP, Linden DR, Szurszewski JH, Ordog T, Gibbons SJ, Farrugia G (2011) Altered expression of ANO 1 variants in human diabetic gastroparesis. J Biol Chem 286:13393–13403

    Article  PubMed  CAS  Google Scholar 

  68. Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469

    Article  PubMed  CAS  Google Scholar 

  69. Mercer AJ, Rabl K, Riccardi GE, Brecha NC, Stella SL Jr, Thoreson WB (2010) Location of release sites and calcium-activated chloride channels relative to calcium channels at the photoreceptor ribbon synapse. J Neurophysiol 105:321–335

    Article  PubMed  CAS  Google Scholar 

  70. Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB Jr, Welsh MJ (2010) Loss of CFTR function produces abnormalities in tracheal development in neonatal pigs and young children. AmJ Respir Crit Care Med 182:1251–1261

    Article  PubMed  Google Scholar 

  71. Middleton RE, Pheasant DJ, Miller C (1996) Homodimeric architecture of a ClC-type chloride ion channel. Nature 383:337–340

    Article  PubMed  CAS  Google Scholar 

  72. Milenkovic VM, Brockmann M, Stohr H, Weber BH, Strauss O (2010) Evolution and functional divergence of the anoctamin family of membrane proteins. BMC Evol Biol 10:319–324

    Article  PubMed  CAS  Google Scholar 

  73. Mizuta K, Tsutsumi S, Inoue H, Sakamoto Y, Miyatake K, Miyawaki K, Noji S, Kamata N, Itakura M (2007) Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia. Biochem Biophys Res Commun 357:126–132

    Article  PubMed  CAS  Google Scholar 

  74. Morris AP, Scott JK, Ball JM, Zeng CQ, O'Neal WK, Estes MK (1999) NSP4 elicits age-dependent diarrhea and Ca2+ mediated I- influx into intestinal crypts of CF mice. Am J Physiol 277:G431–G444

    PubMed  CAS  Google Scholar 

  75. Moyer BD, Hevezi P, Gao N, Lu M, Kalabat D, Soto H, Echeverri F, Laita B, Yeh SA, Zoller M, Zlotnik A (2009) Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations. PLoS ONE 4:e7682

    Article  PubMed  CAS  Google Scholar 

  76. Namkung W, Phuan PW, Verkman AS (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of CaCC conductance in airway and intestinal epithelial cells. J Biol Chem 286:2365–2374

    Article  PubMed  CAS  Google Scholar 

  77. Namkung W, Thiagarajah JR, Phuan PW, Verkman AS (2010) Inhibition of Ca2+-activated Cl− channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J 24:4178–4186

    Article  PubMed  CAS  Google Scholar 

  78. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  79. Olver RE, Walters DV, Wilson M (2004) Developmental regulation of lung liquid transport. Annu Rev Physiol 66:77–101

    Article  PubMed  CAS  Google Scholar 

  80. Otowa T, Yoshida E, Sugaya N, Yasuda S, Nishimura Y, Inoue K, Tochigi M, Umekage T, Miyagawa T, Nishida N, Tokunaga K, Tanii H, Sasaki T, Kaiya H, Okazaki Y (2009) Genome-wide association study of panic disorder in the Japanese population. J Hum Genet 54:122–126

    Article  PubMed  CAS  Google Scholar 

  81. Ousingsawat J, Martins JR, Kongsuphol P, Schreiber R, Rock JR, Harfe BD, and Kunzelmann K (2009) Defective Ca2+ dependent chloride secretion in TMEM16A −/− pups. 11th International Symposium on Exocrine Secretion, Tokushima, Japan, 23–26 July 2009

  82. Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K (2009) Loss of TMEM16A causes a defect in epithelial Ca2+ dependent chloride transport. J Biol Chem 284:28698–28703

    Article  PubMed  CAS  Google Scholar 

  83. Ousingsawat J, Tian Y, AlDehni F, Roussa E, Schreiber R, Mirza M, Cook DI, Kunzelmann K (2011) Rotavirus toxin NSP4 activates the calcium dependent chloride channel TMEM16A and inhibits absorptive Na+ transport. Pflügers Arch 461:579–589

    Article  PubMed  CAS  Google Scholar 

  84. Pedemonte N, Tomati V, Sondo E, Galietta LJ (2010) Influence of cell background on pharmacological rescue of mutant CFTR. Am J Physiol Cell Physiol 298:C866–C874

    Article  PubMed  CAS  Google Scholar 

  85. Perez-Cornejo P, Arreola J (2004) Regulation of Ca(2+)-activated chloride channels by cAMP and CFTR in parotid acinar cells. Biochem Biophys Res Commun 316:612–617

    Article  PubMed  CAS  Google Scholar 

  86. Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038

    Article  PubMed  CAS  Google Scholar 

  87. Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S, Menini A, Zucchelli S (2006) Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc Natl Acad Sci U S A 103:12929–12934

    Article  PubMed  CAS  Google Scholar 

  88. Qu Z, Hartzell HC (2000) Anion permeation in Ca(2+)-activated Cl(−) channels. J Gen Physiol 116:825–844

    Article  PubMed  CAS  Google Scholar 

  89. Rasche S, Toetter B, Adler J, Tschapek A, Doerner JF, Kurtenbach S, Hatt H, Meyer H, Warscheid B, Neuhaus EM (2010) Tmem16b is specifically expressed in the cilia of olfactory sensory neurons. Chem Senses 35:239–245

    Article  PubMed  CAS  Google Scholar 

  90. Rock JR, Futtner CR, Harfe BD (2008) The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev Biol 321:141–149

    Article  PubMed  CAS  Google Scholar 

  91. Rock JR, Harfe BD (2008) Expression of TMEM16 paralogs during murine embryogenesis. Dev Dyn 237:2566–2574

    Article  PubMed  CAS  Google Scholar 

  92. Rock JR, Lopez MC, Baker HV, Harfe BD (2007) Identification of genes expressed in the mouse limb using a novel ZPA microarray approach. Gene Expr Patterns 8:19–26

    Article  PubMed  CAS  Google Scholar 

  93. Rock JR, O'Neal WK, Gabriel SE, Randell SH, Harfe BD, Boucher RC, Grubb BR (2009) Transmembrane protein 16A (TMEM16A) is a Ca2+ regulated Cl—secretory channel in mouse airways. J Biol Chem 284:14875–14880

    Article  PubMed  CAS  Google Scholar 

  94. Romanenko VG, Catalan MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE (2010) Tmem16A encodes the Ca2+-activated Cl channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285:12990–13001

    Article  PubMed  CAS  Google Scholar 

  95. Runft LL, Watras J, Jaffe LA (1999) Calcium release at fertilization of Xenopus eggs requires type I IP(3) receptors, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta. Dev Biol 214:399–411

    Article  PubMed  CAS  Google Scholar 

  96. Sagheddu C, Boccaccio A, Dibattista M, Montani G, Tirindelli R, Menini A (2010) Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells. J Physiol 588:4189–4204

    Article  PubMed  CAS  Google Scholar 

  97. Schittny JC, Miserocchi G, Sparrow MP (2000) Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Am J Respir Cell Mol Biol 23:11–18

    PubMed  CAS  Google Scholar 

  98. Schneppenheim R, Castaman G, Federici AB, Kreuz W, Marschalek R, Oldenburg J, Oyen F, Budde U (2007) A common 253-kb deletion involving VWF and TMEM16B in German and Italian patients with severe von Willebrand disease type 3. J Thromb Haemost 5:722–728

    Article  PubMed  CAS  Google Scholar 

  99. Schreiber R, Uliyakina I, Kongsuphol P, Warth R, Mirza M, Martins JR, Kunzelmann K (2010) Expression and function of epithelial anoctamins. J Biol Chem 285:7838–7845

    Article  PubMed  CAS  Google Scholar 

  100. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  PubMed  CAS  Google Scholar 

  101. Schwab A (2001) Ion channels and transporters on the move. News Physiol Sci 16:29–33, 16: 29–33

    PubMed  CAS  Google Scholar 

  102. Sheridan JT, Worthington EN, Yu K, Gabriel SE, Hartzell HC, Tarran R (2010) Characterization of the oligomeric structure of the Ca2+-activated Cl− channel Ano 1/TMEM16A. J Biol Chem 286:1381–1388

    Article  PubMed  CAS  Google Scholar 

  103. Skals M, Jensen UB, Ousingsawat J, Kunzelmann K, Leipziger J, Praetorius HA (2010) E. coli alpha-hemolysin triggers shrinkage of erythrocytes via KCa3.1 and TMEM16A channels with subsequent phosphatidyl serine exposure. J Biol Chem 285:15557–15565

    Article  PubMed  CAS  Google Scholar 

  104. Skals M, Jorgensen NR, Leipziger J, Praetorius HA (2009) Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci U S A 106:4030–4035

    Article  PubMed  CAS  Google Scholar 

  105. Sones WR, Davis AJ, Leblanc N, Greenwood IA (2010) Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels. Cardiovasc Res 87:476–484

    Article  PubMed  CAS  Google Scholar 

  106. Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO 2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 106:11776–11781

    Article  PubMed  CAS  Google Scholar 

  107. Stock C, Schwab A (2009) Protons make tumor cells move like clockwork. Pflugers Arch 458:981–992

    Article  PubMed  CAS  Google Scholar 

  108. Stohr H, Heisig JB, Benz PM, Schoberl S, Milenkovic VM, Strauss O, Aartsen WM, Wijnholds J, Weber BH, Schulz HL (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity. associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci 29:6809–6818

    Article  PubMed  CAS  Google Scholar 

  109. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  PubMed  CAS  Google Scholar 

  110. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    Article  PubMed  CAS  Google Scholar 

  111. Taylor R, Roper S (1994) Ca(2+)-dependent Cl− conductance in taste cells from Necturus. J Neurophysiol 72:475–478

    PubMed  CAS  Google Scholar 

  112. Thevenod F (2002) Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol 283:C651–C672

    PubMed  CAS  Google Scholar 

  113. Tian Y, Kongsuphol P, Hug MJ, Ousingsawat J, Witzgall R, Schreiber R, Kunzelmann K (2011) Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J 25:1058–1068

    Article  PubMed  CAS  Google Scholar 

  114. Tradtrantip L, Namkung W, Verkman AS (2009) Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol Pharmacol 77:69–78

    Article  PubMed  CAS  Google Scholar 

  115. Tsutsumi S, Kamata N, Vokes TJ, Maruoka Y, Nakakuki K, Enomoto S, Omura K, Amagasa T, Nagayama M, Saito-Ohara F, Inazawa J, Moritani M, Yamaoka T, Inoue H, Itakura M (2004) The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am J Hum Genet 74:1255–1261

    Article  PubMed  CAS  Google Scholar 

  116. Vennekens R, Trouet D, Vankeerberghen A, Voets T, Cuppens H, Eggermont J, Cassiman JJ, Droogmans G, Nilius B (1999) Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator. J Physiol Lond 515:75–85

    Article  PubMed  CAS  Google Scholar 

  117. Vermeer S, Hoischen A, Meijer RP, Gilissen C, Neveling K, Wieskamp N, de Brouwer A, Koenig M, Anheim M, Assoum M, Drouot N, Todorovic S, Milic-Rasic V, Lochmuller H, Stevanin G, Goizet C, David A, Durr A, Brice A, Kremer B, van de Warrenburg BP, Schijvenaars MM, Heister A, Kwint M, Arts P, van der Wijst J, Veltman J, Kamsteeg EJ, Scheffer H, Knoers N (2010) Targeted next-generation sequencing of a 12.5-Mb homozygous region reveals ANO 10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet 87:813–819

    Article  PubMed  CAS  Google Scholar 

  118. Wei L, Vankeerberghen A, Cuppens H, Cassiman JJ, Droogmans G, Nilius B (2001) The C-terminal part of the R-domain, but not the PDZ binding motif, of CFTR is involved in interaction with Ca2+-activated Cl channels. Pflügers Arch 442:280–285

    Article  PubMed  CAS  Google Scholar 

  119. Wei L, Vankeerberghen A, Cuppens H, Eggermont J, Cassiman JJ, Droogmans G, Nilius B (1999) Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator. Pflugers Arch 438:635–641

    Article  PubMed  CAS  Google Scholar 

  120. West RB, Corless CL, Chen X, Rubin BP, Subramanian S, Montgomery K, Zhu S, Ball CA, Nielsen TO, Patel R, Goldblum JR, Brown PO, Heinrich MC, van de Rijn M (2004) The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 165:107–113

    Article  PubMed  CAS  Google Scholar 

  121. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

  122. Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci U S A 101:6752–6757

    Article  PubMed  CAS  Google Scholar 

  123. Zygmunt AC, Gibbons WR (1992) Properties of the calcium-activated chloride current in heart. J Gen Physiol 99:391–414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by DFG SFB699/A7, TargetScreen2 (EU-FP6-2005-LH-037365), Deutsche Krebshilfe (Projekt-Nr.:7207561), and Mukoviszidose e.V. (Projekt-Nr.:S02/10). We thank Mrs. Brigitte Wild and Ms. Julia Redekopf for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kunzelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunzelmann, K., Tian, Y., Martins, J.R. et al. Anoctamins. Pflugers Arch - Eur J Physiol 462, 195–208 (2011). https://doi.org/10.1007/s00424-011-0975-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0975-9

Keywords

Navigation