Skip to main content
Log in

Glutamate transporters and presynaptic metabotropic glutamate receptors protect neocortical Cajal–Retzius cells against over-excitation

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cajal–Retzius (CR) cells, early generated neurons in the marginal zone of developing neocortex, are reported to be highly vulnerable to excitotoxic damage. Because extracellular glutamate concentration in the central nervous system is mainly controlled by glutamate transporters (EAATs), we studied the effects of EAAT blockade on CR cells. dl-TBOA, a specific EAAT antagonist, induced NMDA receptor-dependent bursting discharges in layer 2/3 pyramidal neurons, indicating that EAATs operate in the uptake mode and their blockade leads to elevation of extracellular glutamate concentration. In CR cells, however, dl-TBOA failed to change either the membrane resistance or holding current, and moreover, it reduced the frequency of spontaneous GABAergic postsynaptic currents. dl-TBOA decreased the mean amplitude and increased paired-pulse ratio of evoked GABAergic postsynaptic currents, indicating the presynaptic locus of its action. Indeed, LY379268, a specific agonist of group II metabotropic glutamate receptors (mGluR-II), mimicked the dl-TBOA-mediated effects, and LY341495, an unspecific mGluR antagonist, eliminated the dl-TBOA-induced effects. As dihydrokainic acid, a specific EAAT2 blocker, failed to affect evoked GABAergic postsynaptic currents, whereas TFB-TBOA, a selective blocker of EAAT1 and EAAT2, produced effects similar to that of dl-TBOA, extracellular glutamate concentration in the marginal zone is mainly controlled by EAAT1 (GLAST). Thus, even though CR cells are highly vulnerable to excitotoxic damage, a number of mechanisms serve to protect them against excessive extracellular glutamate concentration including a lack of functional glutamatergic synapses, Mg2+ blockade of NMDA receptors, and presynaptic mGluRs that inhibit transmission at GABAergic synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achilles K, Okabe A, Ikeda M, Shimizu-Okabe C, Yamada J, Fukuda A, Luhmann HJ, Kilb W (2007) Kinetic properties of Cl uptake mediated by Na+-dependent K+-2Cl cotransport in immature rat neocortical neurons. J Neurosci 27:8616–8627

    Article  PubMed  CAS  Google Scholar 

  2. Balslev Y, Saunders NR, Mollgard K (1996) Synaptogenesis in the neocortical anlage and early developing neocortex of rat embryos. Acta Anat (Basel) 156:2–10

    Article  CAS  Google Scholar 

  3. Behar TN, Schaffner AE, Scott CA, Greene CL, Barker JL (2000) GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex 10:899–909

    Article  PubMed  CAS  Google Scholar 

  4. Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D, Liu QY, Colton CA, Barker JL (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19:4449–4461

    PubMed  CAS  Google Scholar 

  5. Chan CH, Yeh HH (2003) Enhanced GABAA receptor-mediated activity following activation of NMDA receptors in Cajal-Retzius cells in the developing mouse neocortex. J Physiol (Lond) 550:103–111

    Article  CAS  Google Scholar 

  6. D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23–31

    PubMed  Google Scholar 

  7. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  8. Demarque M, Villeneuve N, Manent JB, Becq H, Represa A, Ben-Ari Y, Aniksztejn L (2004) Glutamate transporters prevent the generation of seizures in the developing rat neocortex. J Neurosci 24:3289–3294

    Article  PubMed  CAS  Google Scholar 

  9. During MJ, Ryder KM, Spencer DD (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 376:174–177

    Article  PubMed  CAS  Google Scholar 

  10. Frotscher M (1998) Cajal–Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575

    Article  PubMed  CAS  Google Scholar 

  11. Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    PubMed  CAS  Google Scholar 

  12. Hirai K, Yoshioka H, Kihara M, Hasegawa K, Sakamoto T, Sawada T, Fushiki S (1999) Inhibiting neuronal migration by blocking NMDA receptors in the embryonic rat cerebral cortex: a tissue culture study. Brain Res Dev Brain Res 114:63–67

    Article  PubMed  CAS  Google Scholar 

  13. Hu B, McDonald JW, Johnston MV, Silverstein FS (1991) Excitotoxic brain injury suppresses striatal high-affinity glutamate uptake in perinatal rats. J Neurochem 56:933–937

    Article  PubMed  CAS  Google Scholar 

  14. Ikonomidou C, Price MT, Mosinger JL, Frierdich G, Labruyere J, Salles KS, Olney JW (1989) Hypobaric-ischemic conditions produce glutamate-like cytopathology in infant rat brain. J Neurosci 9:1693–1700

    PubMed  CAS  Google Scholar 

  15. Jakobs KH, Lasch P, Minuth M, Aktories K, Schultz G (1982) Uncoupling of alpha-adrenoceptor-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide. J Biol Chem 257:2829–2833

    PubMed  CAS  Google Scholar 

  16. Kirischuk S, Verkhratsky A (1996) [Ca2+]i recordings from neural cells in acutely isolated cerebellar slices employing differential loading of the membrane- permeant form of the calcium indicator fura-2. Pflugers Arch 431:977–983

    PubMed  CAS  Google Scholar 

  17. Kirmse K, Dvorzhak A, Grantyn R, Kirischuk S (2008) Developmental down-regulation of excitatory GABAergic transmission in neocortical layer I via presynaptic adenosine A1 receptors. Cereb Cortex 18:424–432

    Article  PubMed  Google Scholar 

  18. Kirmse K, Dvorzhak A, Henneberger C, Grantyn R, Kirischuk S (2007) Cajal-Retzius cells in the mouse neocortex receive two types of pre- and postsynaptically distinct GABAergic inputs. J Physiol 585:881–895

    Article  PubMed  CAS  Google Scholar 

  19. Kirmse K, Kirischuk S (2006) Ambient GABA constrains the strength of GABAergic synapses at Cajal–Retzius cells in the developing visual cortex. J Neurosci 26:4216–4227

    Article  PubMed  CAS  Google Scholar 

  20. Kirmse K, Kirischuk S (2006) N-ethylmaleimide increases release probability at GABAergic synapses in layer I of the mouse visual cortex. Eur J Neurosci 24:2741–2748

    Article  PubMed  Google Scholar 

  21. Lu SM, Zecevic N, Yeh HH (2001) Distinct NMDA and AMPA receptor-mediated responses in mouse and human Cajal–Retzius cells. J Neurophysiol 86:2642–2646

    PubMed  CAS  Google Scholar 

  22. Manent JB, Demarque M, Jorquera I, Pellegrino C, Ben Ari Y, Aniksztejn L, Represa A (2005) A noncanonical release of GABA and glutamate modulates neuronal migration. J Neurosci 25:4755–4765

    Article  PubMed  CAS  Google Scholar 

  23. Marin-Padilla M (1998) CajalRetzius cells and the development of the neocortex. Trends Neurosci 21:64–71

    Article  PubMed  CAS  Google Scholar 

  24. Martinez-Galan JR, Lopez-Bendito G, Lujan R, Shigemoto R, Fairen A, Valdeolmillos M (2001) Cajal–Retzius cells in early postnatal mouse cortex selectively express functional metabotropic glutamate receptors. Eur J Neurosci 13:1147–1154

    Article  PubMed  CAS  Google Scholar 

  25. Matsugami TR, Tanemura K, Mieda M et al (2006) Indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci U S A 103:12161–12166

    Article  PubMed  CAS  Google Scholar 

  26. Mienville JM (1998) Persistent depolarizing action of GABA in rat Cajal–Retzius cells. J Physiol 512:809–817

    Article  PubMed  CAS  Google Scholar 

  27. Mienville JM, Barker JL (1997) Potassium current expression during prenatal corticogenesis in the rat. Neuroscience 81:163–172

    Article  PubMed  CAS  Google Scholar 

  28. Mienville JM, Pesold C (1999) Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal–Retzius cell death. J Neurosci 19:1636–1646

    PubMed  CAS  Google Scholar 

  29. Minelli A, Barbaresi P, Conti F (2003) Postnatal development of high-affinity plasma membrane GABA transporters GAT-2 and GAT-3 in the rat cerebral cortex. Brain Res Dev Brain Res 142:7–18

    Article  PubMed  CAS  Google Scholar 

  30. Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264

    PubMed  CAS  Google Scholar 

  31. Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    Article  PubMed  CAS  Google Scholar 

  32. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  PubMed  CAS  Google Scholar 

  33. Radnikow G, Feldmeyer D, Lubke J (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal–Retzius cells in the developing rat neocortex. J Neurosci 22:6908–6919

    PubMed  CAS  Google Scholar 

  34. Ramon y Cajal S (1911) Histologie du systeme nerveux de l’homme et des vertebres. Maloine, Paris, France, pp 407–413

  35. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27:6607–6619

    Article  PubMed  CAS  Google Scholar 

  36. Reiprich P, Kilb W, Luhmann HJ (2005) Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo. Cereb Cortex 15:349–358

    Article  PubMed  Google Scholar 

  37. Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal development. Trends Neurosci 28:278–283

    Article  PubMed  CAS  Google Scholar 

  38. Shibata T, Watanabe M, Tanaka K, Wada K, Inoue Y (1996) Dynamic changes in expression of glutamate transporter mRNAs in developing brain. Neuroreport 7:705–709

    Article  PubMed  CAS  Google Scholar 

  39. Shimamoto K, Sakai R, Takaoka K, Yumoto N, Nakajima T, Amara SG, Shigeri Y (2004) Characterization of novel l-threo-beta-benzyloxyaspartate derivatives, potent blockers of the glutamate transporters. Mol Pharmacol 65:1008–1015

    Article  PubMed  CAS  Google Scholar 

  40. Soda T, Nakashima R, Watanabe D, Nakajima K, Pastan I, Nakanishi S (2003) Segregation and coactivation of developing neocortical layer 1 neurons. J Neurosci 23:6272–6279

    PubMed  CAS  Google Scholar 

  41. Soriano E, del Rio JA (2005) The cells of Cajal–Retzius: still a mystery one century after. Neuron 46:389–394

    Article  PubMed  CAS  Google Scholar 

  42. Super H, del Rio JA, Martinez A, Perez-Sust P, Soriano E (2000) Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal–Retzius cells. Cereb Cortex 10:602–613

    Article  PubMed  CAS  Google Scholar 

  43. Super H, Soriano E, Uylings HBM (1998) The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Res Rev 27:40–64

    Article  PubMed  CAS  Google Scholar 

  44. Varoqueaux F, Sigler A, Rhee JS, Brose N, Enk C, Reim K, Rosenmund C (2002) Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci U S A 99:9037–9042

    Article  PubMed  CAS  Google Scholar 

  45. Verhage M, Maia AS, Plomp JJ et al (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869

    Article  PubMed  CAS  Google Scholar 

  46. Voutsinos-Porche B, Knott G, Tanaka K, Quairiaux C, Welker E, Bonvento G (2003) Glial glutamate transporters and maturation of the mouse somatosensory cortex. Cereb Cortex 13:1110–1121

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance of Mrs. Kerstin Rückwardt is highly appreciated. This study was supported by Deutsche Forschungsgemeinschaft (KI1093/1-2 to SK) and by Stiftung Rheinland-Pfalz für Innovation (961-386261/955 to SK). We thank Dr. Werner Kilb and Prof. Heiko Luhmann for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Kirischuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvorzhak, A., Unichenko, P. & Kirischuk, S. Glutamate transporters and presynaptic metabotropic glutamate receptors protect neocortical Cajal–Retzius cells against over-excitation. Pflugers Arch - Eur J Physiol 464, 217–225 (2012). https://doi.org/10.1007/s00424-012-1109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1109-8

Keywords

Navigation