Skip to main content
Log in

High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

How force development and time under tension (TUT) during resistance exercise (RE) influence anabolic signalling of skeletal muscle is incompletely understood. We hypothesized that high force development during RE is more important for post-exercise-induced signalling than submaximal and fatiguing RE with lower force development but similar TUT. Twenty-two male subjects (24 ± 6 years, 181 ± 9 cm, 79 ± 2 kg) performed three distinct RE modes in the fed state with equal TUT but distinct force output: (i) maximal eccentric RE (ECC, n = 7) three sets, eight reps, 100 % eccentric dynamic force; (ii) standard RE (STD, n = 7), three sets, 10 reps, 75 % dynamic force; and (iii) high fatiguing single-set RE (HIT, n = 8), 20 reps, 100 % eccentric-concentric force; vastus lateralis biopsies were collected at baseline, 15, 30, 60, 240  min and 24  h after RE, and the signalling of mechanosensitive and mammalian target of rapamycin (mTOR)-related proteins was determined. The phosphorylation levels of pFAKTyr397, pJNKThr183/Tyr185, pAKTThr308/Ser473, pmTORSer2448, p4E-BP1Thr37/46, p70s6kThr389/Ser421/Thr424 and pS6Ser235/236 were significantly higher in ECC than those in STD and HIT at several time points (P < 0.01). pJNKThr183/Tyr185 and pS6Ser235/236 levels were significantly higher in type II myofibres in ECC compared with STD and HIT. HIT exerted throughout the weakest signalling response. We conclude that high force development during acute RE is superior for anabolic skeletal muscle signalling than fatiguing RE with lower force output but similar TUT. Our results suggest that this response is substantially driven by the higher activation of type II myofibres during RE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Nm:

Newton meter

RE:

Resistance exercise

REPS:

Repetitions

TUT:

Time under tension

AKT:

v-AKT murine thyoma viral oncogene

4E-BP1:

Eukaryotic initiation factor 4E-binding protein 1

MAPK:

Mitogen-activated protein kinase

mTOR:

Mammalian target of rapamycin

JNK:

c-jun N-terminal kinase

p70S6K:

70 kDa S6 protein kinase

p90RSK:

90 kDa ribosomal S6 protein kinase

S6:

S6 ribosomal protein

FAK:

Focal adhesion kinase

AMPK:

5-AMP-activated protein kinase

GSK3-β:

Glycogen synthase kinase 3 beta

TSC-2:

Tuberous sclerosis complex 2 (Tuberin)

CK:

Creatine kinase

References

  1. Miller BF, Olesen JL, Hansen M, Døssing S, Crameri RM, Welling RJ, Langberg H, Flyvbjerg A, Kjaer M, Babraj JA, Smith K, Rennie MJ (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567:1021–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587:1535–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Inoki K, Ouyang H, Zhu TQ, Lindvall C, Wang Y, Zhang XJ, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968

    Article  CAS  PubMed  Google Scholar 

  4. Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS (2005) Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 280:7570–7580

    Article  CAS  PubMed  Google Scholar 

  5. Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exerciseAm. J Physiol 276:C120–127

    CAS  Google Scholar 

  6. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol Lond 576:613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102:145–152

    Article  CAS  PubMed  Google Scholar 

  8. Camera DM, Edge J, Short MJ, Hawley JA, Coffey VG (2010) Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc 42:1843–1852

    Article  CAS  PubMed  Google Scholar 

  9. Tannerstedt J, Apro W, Blomstrand E (2009) Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol 106:1412–1418

    Article  CAS  PubMed  Google Scholar 

  10. Bird SP, Tarpenning KM, Marino FE (2005) Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med 35:841–851

    Article  PubMed  Google Scholar 

  11. Eliasson J, Elfegoun T, Nilsson J, Köhnke R, Ekblom B, Blomstrand E (2006) Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 291:E1197–1205

    Article  CAS  PubMed  Google Scholar 

  12. Terzis G, Spengos K, Mascher H, Georgiadis G, Manta P, Blomstrand E (2010) The degree of p70(S6k) and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur J Appl Physiol 110:835–43

    Article  CAS  PubMed  Google Scholar 

  13. Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5:e12033

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martineau LC, Gardiner PF (2002) Skeletal muscle is sensitive to the tension-time integral but not to the rate of change of tension, as assessed by mechanically induced signaling. J Biomech 35:657–663

    Article  PubMed  Google Scholar 

  15. Klossner S, Durieux AC, Freyssenet D, Flueck M (2009) Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol 106:389–398

    Article  CAS  PubMed  Google Scholar 

  16. Martineau LC, Gardiner PF (2001) Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol 91:693–702

    CAS  PubMed  Google Scholar 

  17. Nardone A, Schieppati M (1988) Shift of activity from slow to fast muscle during voluntary lengthening contractions of the triceps surae muscles in humans. J Physiol 395:363–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gehlert S, Bungartz G, Willkomm L, Korkmaz Y, Pfannkuche K, Schiffer T, Bloch W, Suhr F (2012) Intense resistance exercise induces early and transient increases in ryanodine receptor 1 phosphorylation in human skeletal muscle. PLoS One 7:e49326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  20. Fridén J, Sjöström M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4:170–176

    Article  PubMed  Google Scholar 

  21. Enoka RM (1996) Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol 81:2339–2346

    CAS  PubMed  Google Scholar 

  22. Nardone A, Romanò C, Schieppati M (1989) Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol 409:451–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flück M, Ziemiecki A, Billeter R, Müntener M (2002) Fibre-type specific concentration of focal adhesion kinase at the sarcolemma: influence of fibre innervation and regeneration. J Exp Biol 205:2337–2348

    PubMed  Google Scholar 

  24. Matsakas A, Patel K (2009) Intracellular signalling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes. Histol Histopathol 24:209–222

    CAS  PubMed  Google Scholar 

  25. Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5:87–90

    Article  CAS  PubMed  Google Scholar 

  26. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  27. Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E, Abraham R, Sandri M, Schiaffino S, Reggiani C (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. Faseb Journal 23:3896–3905

    Article  CAS  PubMed  Google Scholar 

  28. Koopman R, Zorenc AHG, Gransier RJJ, Cameron-Smith D, van Loon LJC (2006) Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 290:E1245–E1252

    Article  CAS  PubMed  Google Scholar 

  29. Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295:E595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao Y, Hung M-C (2010) Physiological regulation of Akt activity and stability. Am J Transl Res 2:19–42

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Blaauw B, Mammucari C, Toniolo L, Agatea L, Abraham R, Sandri M, Reggiani C, Schiaffino S (2008) Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Hum Mol Genet 17:3686–3696

    Article  CAS  PubMed  Google Scholar 

  32. Kim CH, Cho YS, Chun YS, Park JW, Kim MS (2002) Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90:E25–33

    Article  CAS  PubMed  Google Scholar 

  33. Franchini KG, Torsoni AS, Soares PH, Saad MJ (2000) Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart. Circ Res 87:558–565

    Article  CAS  PubMed  Google Scholar 

  34. Jones JI, Gockerman A, Busby WH, Camacho-Hubner C, Clemmons DR (1993) Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. J Cell Biol 121:679–687

    Article  CAS  PubMed  Google Scholar 

  35. Perrone CE, Fenwick-Smith D, Vandenburgh HH (1995) Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J Biol Chem 270:2099–2106

    Article  CAS  PubMed  Google Scholar 

  36. Philp A, Hamilton DL, Baar K (2011) Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol 110:561–568

    Article  CAS  PubMed  Google Scholar 

  37. Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A 103:4741–4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. You JS, Frey JW, Hornberger TA (2012) Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid. PLoS One 7:e47258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L (1985) Baker SK, and Phillips SM (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113:71–77

    Article  Google Scholar 

  40. Moore DR, Atherton PJ, Rennie MJ, Tarnopolsky MA, Phillips SM (2011) Resistance exercise enhances mTOR and MAPK signalling in human muscle over that seen at rest after bolus protein ingestion. Acta Physiologica 201:365–372

    Article  CAS  PubMed  Google Scholar 

  41. Glover EI, Oates BR, Tang JE, Moore DR, Tarnopolsky MA, Phillips SM (2008) Resistance exercise decreases eIF2Bepsilon phosphorylation and potentiates the feeding-induced stimulation of p70S6K1 and rpS6 in young men. Am J Physiol Regul Integr Comp Physiol 295:R604–610

    Article  CAS  PubMed  Google Scholar 

  42. Shah OJ, Anthony JC, Kimball SR, Jefferson LS (2000) 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279:E715–E729

    CAS  PubMed  Google Scholar 

  43. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab 273:E99–E107

    CAS  Google Scholar 

  44. Pullen N, Thomas G (1997) The modular phosphorylation and activation of p70s6k. FEBS Lett 410:78–82

    Article  CAS  PubMed  Google Scholar 

  45. Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31:342–348

    Article  CAS  PubMed  Google Scholar 

  46. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N, Blenis J (2007) RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282:14056–14064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Csukly KJ, Martineau LC, Gardiner PF (2002) Inter- and intra-muscle comparisons of MAPK mechanosensitivity: evidence for the absence of fibre-type dependency. Pflugers Arch 444:732–737

    Article  CAS  PubMed  Google Scholar 

  48. Williamson D, Gallagher P, Harber M, Hollon C, Trappe S (2003) Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. Journal of Physiology-London 547:977–987

    Article  CAS  Google Scholar 

  49. Goodman CA, Kotecki JA, Jacobs BL, Hornberger TA (2012) Muscle fiber type-dependent differences in the regulation of protein synthesis. PLoS One 7:e37890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, Hornberger TA (2011) Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J 25:1028–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bentzinger CF, Lin S, Romanino K, Castets P, Guridi M, Summermatter S, Handschin C, Tintignac LA, Hall MN, Rüegg MA (2013) Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle 3:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM (2009) Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. West DWD, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, De Lisio M, Tang JE, Parise G, Rennie MJ, Baker SK, Phillips SM (2009) Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. Journal of Physiology-London 587:5239–5247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Katharina Hermanns and the technicians Anika Voss, Bianca Collins and Mojghan Ghilav (Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine) for expert technical assistance.

Conflict of interest

All authors disclose any professional relationship with companies or manufacturers who will benefit from the results of the present study.

Funding

This investigation was funded by the Federal Institute of Sports Science (BISP) IIA1-507 070103/09-10. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Gehlert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 7 Supplementary data

(A) Ratio of phosphorylated pGSK3-β Ser9to α-Tubulin and (B) pTSC-2Thr1462tototal levelsin STD, HIT and ECC. Ratios are from rested fed baseline conditions and 15, 30, 60, 240 min and 24 h after RE. Values are displayed as means ± S.E.M. Data are expressed in arbitrary units (AU). Significantly different from PRE within each exercise group, P < 0.05. § Significantly different from STD within that time point, P < 0.05. # Significantly different from HIT within that time point, P < 0.05. + significantly different between HIT and STD within that time point, P < 0.05. (GIF 63 kb)

High Resolution Image (TIF 1.94 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gehlert, S., Suhr, F., Gutsche, K. et al. High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflugers Arch - Eur J Physiol 467, 1343–1356 (2015). https://doi.org/10.1007/s00424-014-1579-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1579-y

Keywords

Navigation