Skip to main content

Advertisement

Log in

Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is a state of Klotho deficiency and excess of the phosphaturic hormone fibroblast growth factor 23 (FGF23). Both dysregulations were shown to be associated with endothelial dysfunction in humans, but direct vascular effects of FGF23 remain largely elusive. In vitro experiments were performed to assess the effects of FGF23 (10 ng/mL) in relation to its co-receptor Klotho on nitric oxide (NO) synthesis and reactive oxygen species (ROS) formation and detoxification in human coronary artery endothelial cells (HCAEC). Membrane-bound Klotho is expressed in HCAEC, and FGF23 increases the expression of the Klotho shedding protease ADAM17, and consequently the secretion of soluble Klotho. FGF23 activates FGF receptor 1 and stimulates NO release via Akt-dependent activation of endothelial NO synthase (eNOS). Both FGF receptor (FGFR)-dependent ROS formation via activation of NADPH oxidase 2 (Nox2) as well as ROS degradation via superoxide dismutase 2 (SOD2) and catalase (CAT) is stimulated by FGF23. Pre-incubation with a Klotho inhibitor blunts the FGF23-stimulated Akt-eNOS activation and NO synthesis, and decreases ROS degradation by blocking SOD2 and CAT enzymes, whereas FGF23-stimulated ROS synthesis via Nox2 is unaffected, resulting in low NO bioavailability and increased oxidative stress. Our data indicate that in the presence of Klotho, FGF23 induces NO release in HCAEC and its stimulating effects on ROS production are counterbalanced by increased ROS degradation. In states of Klotho deficiency, e.g., CKD, FGF23-mediated NO synthesis is blunted and ROS formation overrules ROS degradation. Thus, FGF23 excess may primarily promote oxidative stress and thus endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 100:292–298. doi:10.1161/01.CIR.100.3.292

    Article  CAS  PubMed  Google Scholar 

  2. Brandes RP, Weissmann N, Schröder K (2014) Nox Family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76:208–226. doi:10.1016/j.freeradbiomed.2014

    Article  CAS  PubMed  Google Scholar 

  3. Chen C, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A 104:19796–19801. doi:10.1073/pnas.0709805104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donate-Correa J, Mora-Fernández C, Martínez-Sanz R, Muros-de-Fuentes M, Pérez H, Meneses-Pérez B, Cazaña-Pérez V, Navarro-González JF (2013) Expression of FGF23/KLOTHO system in human vascular tissue. Int J Cardiol 165:179–183. doi:10.1016/j.ijcard.2011.08.850

    Article  PubMed  Google Scholar 

  5. Fang Y, Ginsberg C, Seifert M, Agapova O, Sugatani T, Register TC, Freedman BI, Monier-Faugere M, Malluche H, Hruska KA (2014) CKD-induced wingless/Integration1 inhibitors and phosphorus cause the CKD–mineral and bone disorder. J Am Soc Nephrol 25:1760–1773. doi:10.1681/ASN.2013080818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang Y, Ginsberg C, Sugatani T, Monier-Faugere M, Malluche H, Hruska KA (2013) Early chronic kidney disease–mineral bone disorder stimulates vascular calcification. Kidney Int 85:142–150. doi:10.1038/ki.2013.271

    Article  PubMed  PubMed Central  Google Scholar 

  7. Faul C, Wolf M (2015) Hunt for the culprit of cardiovascular injury in kidney disease. Cardiovasc Res 108:209–211. doi:10.1093/cvr/cvv228

    Article  PubMed  Google Scholar 

  8. Faul C, Amaral AP, Oskouei B, Hu M, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-o M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408. doi:10.1172/JCI46122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, Ritz E, Kronenberg F, for the MMKD Study Group (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the mild to moderate kidney disease (MMKD) study. J Am Soc Nephrol 18:2600–2608. doi:10.1681/ASN.2006080936

    Article  CAS  PubMed  Google Scholar 

  10. Foley R, Parfrey P, Sarnak M (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32:S112–S119. doi:10.1053/ajkd.1998.v32.pm9820470

    Article  CAS  PubMed  Google Scholar 

  11. Fulton D, Gratton J, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601. doi:10.1038/21218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare J, David V, Martin A, Fornoni A, Di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstädt H, Stypmann J, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C (2015) Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 22:1020–1032. doi:10.1016/j.cmet.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  13. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Jüppner H, Wolf M (2005) Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205–2215. doi:10.1681/ASN.2005010052

    Article  CAS  PubMed  Google Scholar 

  14. Hu MC, Kuro-o M, Moe OW (2013) Klotho and chronic kidney disease. Contrib Nephrol 180:47–63. doi:10.1159/000346778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ikushima M, Rakugi H, Ishikawa K, Maekawa Y, Yamamoto K, Ohta J, Chihara Y, Kida I, Ogihara T (2006) Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun 339:827–832. doi:10.1016/j.bbrc.2005.11.094

    Article  CAS  PubMed  Google Scholar 

  16. Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CAM, Lash JP, Hsu C, Leonard MB, Wolf M (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378. doi:10.1038/ki.2011.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Isakova T, Xie H, Barchi-Chung A, Vargas G, Sowden N, Houston J, Wahl P, Lundquist A, Epstein M, Smith K, Contreras G, Ortega L, Lenz O, Briones P, Egbert P, Ikizler TA, Jueppner H, Wolf M (2011) Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin J Am Soc Nephrol 6:2688–2695. doi:10.2215/CJN.04290511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jimbo R, Shimosawa T (2014) Cardiovascular risk factors and chronic kidney disease-FGF23: a key molecule in the cardiovascular disease. Int J Hypertens 2014:1–9. doi:10.1155/2014/381082

    Article  Google Scholar 

  19. Kari JA, Donald AE, Vallance DT, Bruckdorfer KR, Leone A, Mullen MJ, Bunce T, Dorado B, Deanfield JE, Rees L (1997) Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney Int 52:468–472. doi:10.1038/ki.1997.354

    Article  CAS  PubMed  Google Scholar 

  20. Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kinoshita S, Kuroki T, Nabeshima Y (2001) Severely reduced production of Klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015–1020. doi:10.1006/bbrc.2000.4226

    Article  CAS  PubMed  Google Scholar 

  21. Kops GJPL, Dansen TB, Polderman PE, Saarloos I, Wirtz KWA, Coffer PJ, Huang T, Bos JL, Medema RH, Burgering BMT (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321. doi:10.1038/nature01036

    Article  CAS  PubMed  Google Scholar 

  22. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima Y (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. doi:10.1038/36285

    Article  CAS  PubMed  Google Scholar 

  23. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu M, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem 281:6120–6123. doi:10.1074/jbc.C500457200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Larsson T, Nisbeth U, Ljunggren Ö, Jüppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64:2272–2279. doi:10.1046/j.1523-1755.2003.00328.x

    Article  CAS  PubMed  Google Scholar 

  25. Leifheit-Nestler M, große Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, Klintschar M, Becker JU, Erbersdobler A, Aufricht C, Seeman T, Fischer D, Faul C, Haffner D (2016) Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transplant 31:1088–1099. doi:10.1093/ndt/gfv421

    Article  PubMed  Google Scholar 

  26. Li H, Horke S, Förstermann U (2013) Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci 34:313–319. doi:10.1016/j.tips.2013.03.007

    Article  PubMed  Google Scholar 

  27. Lim K, Lu T, Molostvov G, Lee C, Lam FT, Zehnder D, Hsiao L (2012) Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 125:2243–2255. doi:10.1161/CIRCULATIONAHA.111.053405

    Article  CAS  PubMed  Google Scholar 

  28. Lindberg K, Olauson H, Amin R, Ponnusamy A, Goetz R, Taylor RF, Mohammadi M, Canfield A, Kublickiene K, Larsson TE (2013) Arterial Klotho expression and FGF23 effects on vascular calcification and function. PLoS One 8:e60658. doi:10.1371/journal.pone.0060658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mencke R, Harms G, Mirković K, Struik J, Van Ark J, Van Loon E, Verkaik M, De Borst MH, Zeebregts CJ, Hoenderop JG, Vervloet MG, Hillebrands J (2015) Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc Res 108:220–231. doi:10.1093/cvr/cvv187

    Article  PubMed  Google Scholar 

  30. Mirams M, Robinson BG, Mason RS, Nelson AE (2004) Bone as a source of FGF23: regulation by phosphate? Bone 35:1192–1199. doi:10.1016/j.bone.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  31. Mirza MAI, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205:385–390. doi:10.1016/j.atherosclerosis.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  32. Mirza MAI, Hansen T, Johansson L, Ahlström H, Larsson A, Lind L, Larsson TE (2009) Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transplant 24:3125–3131. doi:10.1093/ndt/gfp205

    Article  CAS  PubMed  Google Scholar 

  33. Mitsnefes MM (2012) Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol 23:578–585. doi:10.1681/ASN.2011111115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamura T, Saito Y, Ohyama Y, Masuda H, Sumino H, Kuro-o M, Nabeshima Y, Nagai R, Kurabayashi M (2002) Production of nitric oxide, but not prostacyclin, is reduced in Klotho mice. Jpn J Pharmacol 89:149–156. doi:10.1254/jjp.89.149

    Article  CAS  PubMed  Google Scholar 

  35. Navarro-González JF, Donate-Correa J, Muros de Fuentes M, Pérez-Hernández H, Martínez-Sanz R, Mora-Fernández C (2014) Reduced Klotho is associated with the presence and severity of coronary artery disease. Heart 100:34–40. doi:10.1136/heartjnl-2013-304746

    Article  PubMed  Google Scholar 

  36. Nemoto S, Finkel T (2002) Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295:2450–2452. doi:10.1126/science.1069004

    Article  CAS  PubMed  Google Scholar 

  37. Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I (2001) Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci U S A 98:6074–6079. doi:10.1073/pnas.111114298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Portale AA, Wolf M, Jüppner H, Messinger S, Kumar J, Wesseling-Perry K, Schwartz GJ, Furth SL, Warady BA, Salusky IB (2014) Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol 9:344–353. doi:10.2215/CJN.05840513

    Article  CAS  PubMed  Google Scholar 

  40. Rakugi H, Matsukawa N, Ishikawa K, Yang J, Imai M, Ikushima M, Maekawa Y, Kida I, Miyazaki J, Ogihara T (2007) Anti-oxidative effect of Klotho on endothelial cells through cAMP activation. Endocrine 31:82–87. doi:10.1007/s12020-007-0016-9

    Article  CAS  PubMed  Google Scholar 

  41. Saito Y, Nakamura T, Ohyama Y, Suzuki T, Iida A, Shiraki-Iida T, Kuro-o M, Nabeshima Y, Kurabayashi M, Nagai R (2000) In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem Biophys Res Commun 276:767–772. doi:10.1006/bbrc.2000.3470

    Article  CAS  PubMed  Google Scholar 

  42. Saito Y, Yamagishi T, Nakamura T, Ohyama Y, Aizawa H, Suga T, Matsumura Y, Masuda H, Kurabayashi M, Kuro-o M, Nabeshima Y, Nagai R (1998) Klotho protein protects against endothelial dysfunction. Biochem Biophys Res Commun 248:324–329. doi:10.1006/bbrc.1998.8943

    Article  CAS  PubMed  Google Scholar 

  43. Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH (2010) FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant 25:3983–3989. doi:10.1093/ndt/gfq309

    Article  CAS  PubMed  Google Scholar 

  44. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568. doi:10.1172/JCI19081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435. doi:10.1359/JBMR.0301264

    Article  CAS  PubMed  Google Scholar 

  46. Silswal N, Shapland C, Hendrix MJ, Touchberry CD, Grabner A, Faul C, Wacker MJ (2015) Inhibition of FGFR4 reduces changes in cardiac contraction induced by FGF23, but does not rescue impaired endothelium-mediated vasorelaxation [abstract]. J Am Soc Nephrol 26:197A

    Google Scholar 

  47. Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J, Stubbs JR, Wacker MJ (2014) FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab 307:E426–E436. doi:10.1152/ajpendo.00264.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Six I, Okazaki H, Gross P, Cagnard J, Boudot C, Maizel J, Drueke TB, Massy ZA (2014) Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One 9:e93423. doi:10.1371/journal.pone.0093423

    Article  PubMed  PubMed Central  Google Scholar 

  49. Takabe W, Li R, Ai L, Yu F, Berliner JA, Hsiai TK (2010) Oxidized low-density lipoprotein-activated c-Jun NH2-terminal kinase regulates manganese superoxide dismutase ubiquitination: implication for mitochondrial redox status and apoptosis. Arterioscler Thromb Vasc Biol 30:436–441. doi:10.1161/ATVBAHA.109.202135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan W, Wang K, Lv D, Li P (2008) Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J Biol Chem 283:29730–29739. doi:10.1074/jbc.M805514200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774. doi:10.1038/nature05315

    Article  CAS  PubMed  Google Scholar 

  52. van Venrooij NA, Pereira RC, Tintut Y, Fishbein MC, Tumber N, Demer LL, Salusky IB, Wesseling-Perry K (2014) FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrol Dial Transplant 29:1525–1532. doi:10.1093/ndt/gft523

    Article  PubMed  PubMed Central  Google Scholar 

  53. Viaene L, Bammens B, Meijers BKI, Vanrenterghem Y, Vanderschueren D, Evenepoel P (2012) Residual renal function is an independent determinant of serum FGF-23 levels in dialysis patients. Nephrol Dial Transplant 27:2017–2022. doi:10.1093/ndt/gfr596

    Article  CAS  PubMed  Google Scholar 

  54. Wang Q, Chen W, Bai L, Chen W, Padilla MT, Lin AS, Shi S, Wang X, Lin Y (2014) Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway. J Biol Chem 289:5654–5663. doi:10.1074/jbc.M113.526152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Kuro-o M, Sun Z (2012) Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell 11:410–417. doi:10.1111/j.1474-9726.2012.00796.x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M (2005) Regulation of oxidative stress by the anti-aging hormone Klotho. J Biol Chem 280:38029–38034. doi:10.1074/jbc.M509039200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yilmaz MI, Sonmez A, Saglam M, Yaman H, Kilic S, Demirkaya E, Eyileten T, Caglar K, Oguz Y, Vural A, Yenicesu M, Zoccali C (2010) FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int 78:679–685. doi:10.1038/ki.2010.194

    Article  CAS  PubMed  Google Scholar 

  58. Yu X, Ibrahimi OA, Goetz R, Zhang F, Davis SI, Garringer HJ, Linhardt RJ, Ornitz DM, Mohammadi M, White KE (2005) Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 146:4647–4656. doi:10.1210/en.2005-0670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Chang J, Duan X, Yu Y, Zhang B (2015) Thyroid hormone attenuates vascular calcification induced by vitamin D3 plus nicotine in rats. Calcif Tissue Int 96:80–87. doi:10.1007/s00223-014-9934-8

    Article  CAS  PubMed  Google Scholar 

  60. Zhu D, Mackenzie NCW, Millan JL, Farquharson C, MacRae VE (2013) A protective role for FGF-23 in local defence against disrupted arterial wall integrity? Mol Cell Endocrinol 372:1–11. doi:10.1016/j.mce.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors have no conflict of interest to declare regarding this paper. No external funding was received for this study. The authors thank Prof. Dr. Michael Klintschar (Institute for Forensic Medicine, Hannover Medical School, Germany) and Prof. Dr. Ruthild Weber (Department of Human Genetics, Hannover Medical School, Germany) for collection of tissue samples from the human heart, aorta, and kidney. Furthermore, they would like to thank Dr. Benjamin Förthmann (Institute of Neuroanatomy, Hannover Medical School, Germany) for HEK-293T cells and Anja Ziolek for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Leifheit-Nestler.

Electronic supplementary material

ESM 1

(PDF 1608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, B., Haller, J., Haffner, D. et al. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflugers Arch - Eur J Physiol 468, 1621–1635 (2016). https://doi.org/10.1007/s00424-016-1858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1858-x

Keywords

Navigation