Skip to main content
Log in

Claudins in barrier and transport function—the kidney

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Claudins are discovered to be key players in renal epithelial physiology. They are involved in developmental, physiological, and pathophysiological differentiation. In the glomerular podocytes, claudin-1 is an important determinant of cell junction fate. In the proximal tubule, claudin-2 plays important roles in paracellular salt reabsorption. In the thick ascending limb, claudin-14, -16, and -19 regulate the paracellular reabsorption of calcium and magnesium. Recessive mutations in claudin-16 or -19 cause an inherited calcium and magnesium losing disease. Synonymous variants in claudin-14 have been associated with hypercalciuric nephrolithiasis by genome-wide association studies (GWASs). More importantly, claudin-14 gene expression can be regulated by extracellular calcium levels via the calcium sensing receptor. In the distal tubules, claudin-4 and -8 form paracellular chloride pathway to facilitate electrogenic sodium reabsorption. Aldosterone, WNK4, Cap1, and KLHL3 are powerful regulators of claudin and the paracellular chloride permeability. The lessons learned on claudins from the kidney will have a broader impact on tight junction biology in other epithelia and endothelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexandre MD, Lu Q, Chen YH (2005) Overexpression of claudin-7 decreases the paracellular Cl- conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J Cell Sci 118:2683–2693

    Article  CAS  PubMed  Google Scholar 

  2. Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, Elger M, Kriz W, Floege J, Moeller MJ (2009) Recruitment of podocytes from glomerular parietal epithelial cells. Journal of the American Society of Nephrology : JASN 20:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balda MS, Matter K (2009) Tight junctions and the regulation of gene expression. Biochim Biophys Acta 1788:761–767

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061

    Article  CAS  PubMed  Google Scholar 

  5. Benzing T (2004) Signaling at the slit diaphragm. Journal of the American Society of Nephrology : JASN 15:1382–1391

    Article  PubMed  Google Scholar 

  6. Berger K, Schulte K, Boor P, Kuppe C, van Kuppevelt TH, Floege J, Smeets B, Moeller MJ (2014) The regenerative potential of parietal epithelial cells in adult mice. Journal of the American Society of Nephrology : JASN 25:693–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Breiderhoff T, Himmerkus N, Stuiver M, Mutig K, Will C, Meij IC, Bachmann S, Bleich M, Willnow TE, Muller D (2012) Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci U S A 109:14241–14246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burg MB, Green N (1973) Function of the thick ascending limb of Henle’s loop. Am J Phys 224:659–668

    CAS  Google Scholar 

  9. Burg MB, Orloff J (1970) Electrical potential difference across proximal convoluted tubules. Am J Phys 219:1714–1716

    CAS  Google Scholar 

  10. Caulfield JP, Reid JJ, Farquhar MG (1976) Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Laboratory investigation; a journal of technical methods and pathology 34:43–59

    CAS  PubMed  Google Scholar 

  11. Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. American journal of physiology Cell physiology 283:C142–C147

    Article  CAS  PubMed  Google Scholar 

  12. Done S, Takemoto M, He L, Sun Y, Hultenby K, Betsholtz C, Tryggvason K (2008) Nephrin is involved in podocyte maturation but not survival during glomerular development. Kidney Int 73:697–704

    Article  CAS  PubMed  Google Scholar 

  13. Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117:19–29

    Article  CAS  PubMed  Google Scholar 

  14. Eng DG, Sunseri MW, Kaverina NV, Roeder SS, Pippin JW, Shankland SJ (2015) Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int 88:999–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farquhar MG, Palade GE (1961) Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J Exp Med 114:699–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujita H, Hamazaki Y, Noda Y, Oshima M, Minato N (2012) Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PLoS One 7:e52272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fukasawa H, Bornheimer S, Kudlicka K, Farquhar MG (2009) Slit diaphragms contain tight junction proteins. Journal of the American Society of Nephrology : JASN 20:1491–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  22. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong Y, Himmerkus N, Plain A, Bleich M, Hou J (2015) Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. Journal of the American Society of Nephrology : JASN 26:663–676

    Article  CAS  PubMed  Google Scholar 

  25. Gong Y, Hou J (2014) Claudin-14 underlies Ca++-sensing receptor-mediated Ca++ metabolism via NFAT-microRNA-based mechanisms. Journal of the American Society of Nephrology : JASN 25:745–760

    Article  CAS  PubMed  Google Scholar 

  26. Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, Hou J (2012) Claudin-14 regulates renal Ca(+)(+) transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31:1999–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gong Y, Renigunta V, Zhou Y, Sunq A, Wang J, Yang J, Renigunta A, Baker LA, Hou J (2015) Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization. Mol Biol Cell

  28. Gong Y, Sunq A, Roth RA, Hou J (2016) Inducible expression of claudin-1 in glomerular podocytes generates aberrant tight junctions and proteinuria through slit diaphragm destabilization. J Am Soc Nephrol

  29. Gong Y, Wang J, Yang J, Gonzales E, Perez R, Hou J (2015) KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8. Proc Natl Acad Sci U S A 112:4340–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gong Y, Yu M, Yang J, Gonzales E, Perez R, Hou M, Tripathi P, Hering-Smith KS, Hamm LL, Hou J (2014) The Cap1-claudin-4 regulatory pathway is important for renal chloride reabsorption and blood pressure regulation. Proc Natl Acad Sci U S A 111:E3766–E3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goodenough DA, Revel JP (1970) A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol 45:272–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grahammer F, Schell C, Huber TB (2013) The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol 9:587–598

    Article  CAS  PubMed  Google Scholar 

  33. Greger R (1981) Cation selectivity of the isolated perfused cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Archiv : European journal of physiology 390:30–37

    Article  CAS  PubMed  Google Scholar 

  34. Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev 65:760–797

    CAS  PubMed  Google Scholar 

  35. Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, Hosoya K, Komatsu M, Kaneko Y, Kanda T, Kubota E, Tokuyama H, Hayashi K, Guarente L, Itoh H (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing claudin-1 overexpression in podocytes. Nat Med 19:1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Phys 241:F412–F431

    CAS  Google Scholar 

  37. Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of transepithelial voltage. Am J Phys 241:F432–F442

    CAS  Google Scholar 

  38. Hou J (2013) A connected tale of claudins from the renal duct to the sensory system. Tissue barriers 1:e24968

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hou J, Gomes AS, Paul DL, Goodenough DA (2006) Study of claudin function by RNA interference. J Biol Chem 281:36117–36123

    Article  CAS  PubMed  Google Scholar 

  40. Hou J, Rajagopal M, Yu AS (2013) Claudins and the kidney. Annu Rev Physiol 75:479–501

    Article  CAS  PubMed  Google Scholar 

  41. Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA (2009) Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106:15350–15355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118:619–628

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hou J, Renigunta A, Yang J, Waldegger S (2010) Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci U S A 107:18010–18015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA (2007) Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 282:17114–17122

    Article  CAS  PubMed  Google Scholar 

  45. Itoh M, Nakadate K, Horibata Y, Matsusaka T, Xu J, Hunziker W, Sugimoto H (2014) The structural and functional organization of the podocyte filtration slits is regulated by Tjp1/ZO-1. PLoS One 9:e106621

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kahle KT, Macgregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP (2004) Paracellular Cl-permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proc Natl Acad Sci U S A 101:14877–14882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    CAS  PubMed  Google Scholar 

  48. Kokko JP, Burg MB, Orloff J (1971) Characteristics of NaCl and water transport in the renal proximal tubule. J Clin Invest 50:69–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kovbasnjuk O, Leader JP, Weinstein AM, Spring KR (1998) Water does not flow across the tight junctions of MDCK cell epithelium. Proc Natl Acad Sci U S A 95:6526–6530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kreidberg JA (2003) Podocyte differentiation and glomerulogenesis. Journal of the American Society of Nephrology : JASN 14:806–814

    Article  PubMed  Google Scholar 

  52. Krug SM, Gunzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, Schulzke JD, Fromm M (2012) Claudin-17 forms tight junction channels with distinct anion selectivity. Cellular and molecular life sciences : CMLS 69:2765–2778

    Article  CAS  PubMed  Google Scholar 

  53. Le Moellic C, Boulkroun S, Gonzalez-Nunez D, Dublineau I, Cluzeaud F, Fay M, Blot-Chabaud M, Farman N (2005) Aldosterone and tight junctions: modulation of claudin-4 phosphorylation in renal collecting duct cells. American journal of physiology Cell physiology 289:C1513–C1521

    Article  CAS  PubMed  Google Scholar 

  54. Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4:225–236

    Article  CAS  PubMed  Google Scholar 

  55. Milatz S, Himmerkus, N., Wulfmeyer, V.C., Drewell, H., Mutig, K., Hou, J., Breiderhoff, T., Muller, D., Fromm, M., Bleich, M., Gunzel, D (2016) Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg++ transport. PNAS under revision

  56. Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. Journal of the American Society of Nephrology : JASN 13:3005–3015

    Article  PubMed  Google Scholar 

  57. Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, Kusano E, Tsukita S, Furuse M (2010) Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 107:8011–8016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Neil RG, Boulpaep EL (1982) Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule. Am J Phys 243:F81–F95

    Google Scholar 

  59. O’Neil RG, Sansom SC (1984) Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J Membr Biol 82:281–295

    Article  PubMed  Google Scholar 

  60. Ohse T, Chang AM, Pippin JW, Jarad G, Hudkins KL, Alpers CE, Miner JH, Shankland SJ (2009) A new function for parietal epithelial cells: a second glomerular barrier. American journal of physiology Renal physiology 297:F1566–F1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ohse T, Pippin JW, Chang AM, Krofft RD, Miner JH, Vaughan MR, Shankland SJ (2009) The enigmatic parietal epithelial cell is finally getting noticed: a review. Kidney Int 76:1225–1238

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    Article  CAS  PubMed  Google Scholar 

  63. Pei L, Solis G, Nguyen MT, Kamat N, Magenheimer L, Zhuo M, Li J, Curry J, McDonough AA, Fields TA, Welch WJ, Yu AS (2016) Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J Clin Invest 126:2509–2518

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD (2014) The glomerulus: the sphere of influence. Clinical journal of the American Society of Nephrology : CJASN 9:1461–1469

    Article  PubMed  PubMed Central  Google Scholar 

  65. Reeves W, Caulfield JP, Farquhar MG (1978) Differentiation of epithelial foot processes and filtration slits: sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli. Laboratory investigation; a journal of technical methods and pathology 39:90–100

    CAS  PubMed  Google Scholar 

  66. Reyes JL, Lamas M, Martin D, del Carmen Namorado M, Islas S, Luna J, Tauc M, Gonzalez-Mariscal L (2002) The renal segmental distribution of claudins changes with development. Kidney Int 62:476–487

    Article  CAS  PubMed  Google Scholar 

  67. Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Gunzel D, Fromm M (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123:1913–1921

    Article  CAS  PubMed  Google Scholar 

  68. Sands JM, Nonoguchi H, Knepper MA (1988) Hormone effects on NaCl permeability of rat inner medullary collecting duct. Am J Phys 255:F421–F428

    CAS  Google Scholar 

  69. Sansom SC, Weinman EJ, O’Neil RG (1984) Microelectrode assessment of chloride-conductive properties of cortical collecting duct. Am J Phys 247:F291–F302

    CAS  Google Scholar 

  70. Schnabel E, Anderson JM, Farquhar MG (1990) The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111:1255–1263

    Article  CAS  PubMed  Google Scholar 

  71. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A 95:9660–9664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scott RP, Quaggin SE (2015) Review series: the cell biology of renal filtration. J Cell Biol 209:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shankland SJ, Smeets B, Pippin JW, Moeller MJ (2014) The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol 10:158–173

    Article  CAS  PubMed  Google Scholar 

  74. Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235

    Article  CAS  PubMed  Google Scholar 

  75. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science (New York, NY) 285:103–106

    Article  CAS  Google Scholar 

  76. Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ (2016) The 3.8 a resolution cryo-EM structure of Zika virus. Science (New York, NY) 352:467–470

    Article  CAS  Google Scholar 

  77. Smeets B, Kuppe C, Sicking EM, Fuss A, Jirak P, van Kuppevelt TH, Endlich K, Wetzels JF, Grone HJ, Floege J, Moeller MJ (2011) Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. Journal of the American Society of Nephrology : JASN 22:1262–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smeets B, Uhlig S, Fuss A, Mooren F, Wetzels JF, Floege J, Moeller MJ (2009) Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. Journal of the American Society of Nephrology : JASN 20:2604–2615

    Article  PubMed  PubMed Central  Google Scholar 

  79. Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science (New York, NY) 344:304–307

    Article  CAS  Google Scholar 

  80. Suzuki H, Tani K, Tamura A, Tsukita S, Fujiyoshi Y (2015) Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol 427:291–297

    Article  CAS  PubMed  Google Scholar 

  81. Tang VW, Goodenough DA (2003) Paracellular ion channel at the tight junction. Biophys J 84:1660–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tatum R, Zhang Y, Salleng K, Lu Z, Lin JJ, Lu Q, Jeansonne BG, Ding L, Chen YH (2010) Renal salt wasting and chronic dehydration in claudin-7-deficient mice. American journal of physiology Renal physiology 298:F24–F34

    Article  CAS  PubMed  Google Scholar 

  83. Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, Sulem P, Halldorsson BV, de Vegt F, d’Ancona FC, den Heijer M, Franzson L, Christiansen C, Alexandersen P, Rafnar T, Kristjansson K, Sigurdsson G, Kiemeney LA, Bodvarsson M, Indridason OS, Palsson R, Kong A, Thorsteinsdottir U, Stefansson K (2009) Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 41:926–930

    Article  CAS  PubMed  Google Scholar 

  84. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–610

    Article  CAS  PubMed  Google Scholar 

  85. Van Itallie C, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Itallie CM, Fanning AS, Anderson JM (2003) Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. American journal of physiology Renal physiology 285:F1078–F1084

    Article  CAS  PubMed  Google Scholar 

  87. Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W, Colegio OR, Anderson JM (2008) The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci 121:298–305

    Article  CAS  PubMed  Google Scholar 

  88. Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. American journal of physiology Renal physiology 291:F1288–F1299

    Article  CAS  PubMed  Google Scholar 

  89. Wanner N, Hartleben B, Herbach N, Goedel M, Stickel N, Zeiser R, Walz G, Moeller MJ, Grahammer F, Huber TB (2014) Unraveling the role of podocyte turnover in glomerular aging and injury. Journal of the American Society of Nephrology : JASN 25:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Webber WA, Blackbourn J (1971) The permeability of the parietal layer of Bowman’s capsule. Laboratory investigation; a journal of technical methods and pathology 25:367–373

    CAS  PubMed  Google Scholar 

  91. Wen H, Watry DD, Marcondes MC, Fox HS (2004) Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol 24:8408–8417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Will C, Breiderhoff T, Thumfart J, Stuiver M, Kopplin K, Sommer K, Gunzel D, Querfeld U, Meij IC, Shan Q, Bleich M, Willnow TE, Muller D (2010) Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. American journal of physiology Renal physiology 298:F1152–F1161

    Article  CAS  PubMed  Google Scholar 

  93. Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S (2004) Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci U S A 101:4690–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y (2015) Structure of a yeast spliceosome at 3.6-angstrom resolution. Science (New York, NY) 349:1182–1191

    Article  CAS  Google Scholar 

  95. Yu AS, Cheng MH, Angelow S, Gunzel D, Kanzawa SA, Schneeberger EE, Fromm M, Coalson RD (2009) Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol 133:111–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yu AS, Enck AH, Lencer WI, Schneeberger EE (2003) Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278:17350–17359

    Article  CAS  PubMed  Google Scholar 

  97. Zhou L, Zeng Y, Baker LA, Hou J (2015) A proposed route to independent measurements of tight junction conductance at discrete cell junctions. Tissue barriers 3:e1105907

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhou Y, Chen CC, Weber AE, Zhou L, Baker LA, Hou J (2013) Potentiometric-scanning ion conductance microscopy for measurement at tight junctions. Tissue barriers 1:e25585

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from National Institute of Diabetes and Digestive and Kidney Diseases—RO1DK084059 and Department of Defense—HDTRA1-11-16-BRCWMDBAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghui Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Hou, J. Claudins in barrier and transport function—the kidney. Pflugers Arch - Eur J Physiol 469, 105–113 (2017). https://doi.org/10.1007/s00424-016-1906-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1906-6

Keywords

Navigation