Skip to main content

Advertisement

Log in

Gene expression profiling in glioblastoma and immunohistochemical evaluation of IGFBP-2 and CDC20

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Thirty-nine glial tumours (28 glioblastomas (GB) and 11 low-grade gliomas) were investigated with DNA microarrays to reveal a possible specific gene expression profile. Unsupervised classification through hierarchical cluster analysis identified two groups of tumours, the first composed of low-grade gliomas and the second mainly composed of GB. Nine genes were identified as most informative: seven were over-expressed in low-grade gliomas and under-expressed in GB; on the contrary, two genes, insulin-like growth factor binding protein 2 (IGFBP-2) and cell division cycle 20 homologue (CDC20), were over-expressed in GB and under-expressed in low-grade tumours. This same genetic profile was confirmed by reverse transcriptase polymerase chain reaction. Immunohistochemistry for IGFBP-2 was positive in 88.8% of the cases of GB and in only one low-grade glioma, whilst CDC20 immunostained 74.1% of the cases of GB and none low-grade glioma. This was confirmed in an additional series of cases studied with immunohistochemistry only. In conclusion, over-expression of mRNA levels of IGFBP-2 and CDC20 is highly related to GB, IGFBP-2 and CDC-20 gene and protein expressions are strongly correlated, and IGFBP-2 and CDC20 immunopositivity can be useful for the identification of GB in small biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD et al (2007) World Health Organization classification of tumours of the central nervous system. IARC, Lyon

    Google Scholar 

  2. Coons SW, Johnson PC, Scheithauer BW et al (1997) Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer 79:1381–1393

    Article  PubMed  CAS  Google Scholar 

  3. Nutt CL, Mani DR, Betensky RA et al (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63:1602–1607

    PubMed  CAS  Google Scholar 

  4. Reifenberger G, Louis DN (2003) Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol 62:111–126

    PubMed  CAS  Google Scholar 

  5. Gajjar A, Hernan R, Kocak M et al (2004) Clinical, histopathologic and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J Clin Oncol 22:984–993

    Article  PubMed  CAS  Google Scholar 

  6. Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442

    Article  PubMed  CAS  Google Scholar 

  7. Lossos IS, Czerwinski DK, Alizadeh AA et al (2004) Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 350:1828–1837

    Article  PubMed  CAS  Google Scholar 

  8. van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  Google Scholar 

  9. Zahrak M, Parmigiani G, Wayne Y (2007) Pre-processing Agilent microarray data. BMC Bioinformatics 8:142

    Article  Google Scholar 

  10. Smyth GK, Speed TP (2003) Normalization of cDNA microarry data. Methods 31:265–273

    Article  PubMed  CAS  Google Scholar 

  11. Tibshirani R, Hastie T, Narasimhan B et al (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99:6567–6572

    Article  PubMed  CAS  Google Scholar 

  12. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–10

    Google Scholar 

  13. Pattyn F, Speleman F, De Paepe A et al (2003) RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Res 31:122–123

    Article  PubMed  CAS  Google Scholar 

  14. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 18:3–4

    Google Scholar 

  15. Flyvbjerg A, Mogensen O, Mogensen B et al (1997) Elevated serum insulin-like growth factor-binding protein 2 (IGFBP-2) and decreased IGFBP-3 in epithelial ovarian cancer: correlation with cancer antigen 125 and tumor-associated trypsin inhibitor. J Clin Endocrinol Metab 82:2308–2313

    Article  PubMed  CAS  Google Scholar 

  16. el Atiq F, Garrouste F, Remacle-Bonnet M et al (1994) Alterations in serum levels of insulin-like growth factors and insulin-like growth-factor-binding proteins in patients with colorectal cancer. Int J Cancer 57:491–497

    Article  PubMed  Google Scholar 

  17. Ho PJ, Baxter RC (1997) Insulin-like growth factor-binding protein-2 in patients with prostate carcinoma and benign prostatic hyperplasia. Clin Endocrinol 46:333–342

    Article  CAS  Google Scholar 

  18. Richardsen E, Ukkonen T, Bjørnsen T et al (2003) Overexpression of IGBFB2 is a marker for malignant transformation in prostate epithelium. Virchows Arch 442:329–335

    PubMed  CAS  Google Scholar 

  19. Ranke MB, Maier KP, Schweizer R et al (2003) Pilot study of elevated levels of insulin-like growth factor-binding protein-2 as indicators of hepatocellular carcinoma. Horm Res 60:174–180

    Article  PubMed  CAS  Google Scholar 

  20. Russo VC, Schütt BS, Andaloro E et al (2005) Insulin-like growth factor binding protein-2 binding to extracellular matrix plays a critical role in neuroblastoma cell proliferation, migration, and invasion. Endocrinology 146:4445–4455

    Article  PubMed  CAS  Google Scholar 

  21. Dunlap SM, Celestino J, Wang H et al (2007) Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc Natl Acad Sci U S A 104:11736–11741

    Article  PubMed  CAS  Google Scholar 

  22. Wang H, Wang H, Shen W et al (2003) Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 63:4315–4321

    PubMed  CAS  Google Scholar 

  23. Godard S, Getz G, Delorenzi M et al (2003) Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 63:6613–6625

    PubMed  CAS  Google Scholar 

  24. Fang G, Yu H, Kirschner MW (1998) Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol Cell 2:163–171

    Article  PubMed  CAS  Google Scholar 

  25. Ouellet V, Guyot MC, Le Page C et al (2006) Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer 119:599–607

    Article  PubMed  CAS  Google Scholar 

  26. Kim JM, Sohn HY, Yoon SY et al (2005) Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. Clin Cancer Res 11:473–482

    PubMed  Google Scholar 

  27. Mondal G, Sengupta S, Panda CK et al (2007) Overexpression of CDC20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis 28:81–92

    Article  PubMed  CAS  Google Scholar 

  28. Yuan B, Xu Y, Woo JH et al (2006) Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 12:405–410

    Article  PubMed  CAS  Google Scholar 

  29. Kidokoro T, Tanikawa C, Furukawa Y et al (2008) CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene 27:1562–71

    Article  PubMed  CAS  Google Scholar 

  30. Zhang L, Huang W, Chen J et al (2007) Expression of IGFBP2 in gastric carcinoma and relationship with clinicopathologic parameters and cell proliferation. Dig Dis Sci. 52:248–253

    Article  PubMed  Google Scholar 

  31. Elmlinger MW, Deininger MH, Schuett BS et al (2001) In vivo expression of insulin-like growth factor-binding protein-2 in human gliomas increases with the tumor grade. Endocrinology 142:1652–1658

    Article  PubMed  CAS  Google Scholar 

  32. Yokota T, Kouno J, Adachi K et al (2006) Identification of histological markers for malignant glioma by genome-wide expression analysis: dynein, alpha-PIX and sorcin. Acta Neuropathol 111:29–38

    Article  PubMed  CAS  Google Scholar 

  33. Boda B, Mas C, Muller D (2002) Activity-dependent regulation of genes implicated in X-linked non-specific mental retardation. Neuroscience 114:13–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank Dr. M. Guizzardi for the encouragement to enter into the world of gene array. This work was presented as Presidential free paper at the 3rd Intercontinental Congress of Pathology, May 2008, Barcelona

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Eusebi.

Additional information

This work was supported by the MIUR /FISR project 1509 (202).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marucci, G., Morandi, L., Magrini, E. et al. Gene expression profiling in glioblastoma and immunohistochemical evaluation of IGFBP-2 and CDC20. Virchows Arch 453, 599–609 (2008). https://doi.org/10.1007/s00428-008-0685-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-008-0685-7

Keywords

Navigation