Skip to main content

Advertisement

Log in

The role of CD4+ T cells in BKV-specific T cell immunity

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Reactivation of polyomavirus BK (BKV) infection represents a severe complication in kidney transplant (KTX) patients. We previously reported an association between a declining BK viral load and the reconstitution of CD4+ T cell BKV-specific immunity in patients following kidney transplantation. However, the specific contribution of CD4+ T cells in the regulation of BKV-replication is unknown. Nevertheless, in vitro enrichment of BKV-specific T cells and subsequent adoptive T cell transfer may improve the restoration of immune competence in KTX patients with BKV infection. To date, strategies to capture human BKV-specific T cells with the ensuing expansion to clinically useful numbers are lacking. Here, we demonstrated a comprehensive flow cytometric analysis of the BKV-specific T cell response that permits access to the majority of T cells specific for immunodominant BKV antigens. A full-spectrum evaluation of the BKV-specific T cell response was performed by stimulating peripheral blood mononuclear cells (PBMC) with a mixture of BKV immunodominant peptide pools at varying concentrations and measuring activation marker expression and cytokine secretion. We also examined the effects of co-stimulation and PBMC resting time prior to activation. We defined the narrow range of stimulation conditions that permit the capture and expansion of functional BKV-specific T cell lines. The generated BKV-specific T cell lines showed the highest specificity and functionality when the T cells were captured according to IFNγ-secretion. This study highlights the multifunctional and cytolytic BKV-specific CD4+ T cells as a dominant population within the generated T cell product. This method offers a novel approach for the generation of BKV-specific T cell lines for adoptive immunotherapy and underscores the critical role of CD4+ T cells in the clearance of BKV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BKV:

Polyomavirus BK

BKV-PPM:

BKV overlapping peptide pool mix

SOT:

Solid organ transplantation

BKVAN:

BKV-associated nephropathy

PBMC:

Peripheral blood mononuclear cells

TCL:

T cell line

SEB:

Staphylococcus enterotoxin B

HAdV:

Human adenovirus

References

  1. Knowles WA (2006) Discovery and epidemiology of the human polyomaviruses BK virus (BKV) and JC virus (JCV). Adv Exp Med Biol 577:19–45

    Article  CAS  PubMed  Google Scholar 

  2. Binet I et al (1999) Polyomavirus disease under new immunosuppressive drugs: a cause of renal graft dysfunction and graft loss. Transplantation 67(6):918–922

    Article  CAS  PubMed  Google Scholar 

  3. Hirsch HH (2002) Polyomavirus BK nephropathy: a (re-)emerging complication in renal transplantation. Am J Transplant 2(1):25–30

    Article  PubMed  Google Scholar 

  4. Hirsch HH et al (2002) Prospective study of polyomavirus type BK replication and nephropathy in renal-transplant recipients. N Engl J Med 347(7):488–496

    Article  PubMed  Google Scholar 

  5. Akazawa Y et al (2012) Fatal BK virus pneumonia following stem cell transplantation. Transpl Infect Dis 14(6):E142–E146

    Article  CAS  PubMed  Google Scholar 

  6. Breuer S et al (2012) Molecular diagnosis and management of viral infections in hematopoietic stem cell transplant recipients. Mol Diagn Ther 16(2):63–77

    Article  CAS  PubMed  Google Scholar 

  7. Bogdanovic G et al (2004) Association between a high BK virus load in urine samples of patients with graft-versus-host disease and development of hemorrhagic cystitis after hematopoietic stem cell transplantation. J Clin Microbiol 42(11):5394–5396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Babel N, Volk HD, Reinke P (2011) BK polyomavirus infection and nephropathy: the virus–immune system interplay. Nat Rev Nephrol 7(7):399–406

    Article  CAS  PubMed  Google Scholar 

  9. Bernhoff E et al (2008) Cidofovir inhibits polyomavirus BK replication in human renal tubular cells downstream of viral early gene expression. Am J Transplant 8(7):1413–1422

    Article  CAS  PubMed  Google Scholar 

  10. Hirsch HH, Steiger J (2003) Polyomavirus BK. Lancet Infect Dis 3(10):611–623

    Article  PubMed  Google Scholar 

  11. Ho ES et al (2000) Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 11(3):383–393

    CAS  PubMed  Google Scholar 

  12. Ramos E et al (2009) The decade of polyomavirus BK-associated nephropathy: state of affairs. Transplantation 87(5):621–630

    Article  PubMed  Google Scholar 

  13. Mueller K et al (2011) BK-VP3 as a new target of cellular immunity in BK virus infection. Transplantation 91(1):100–107

    Article  PubMed  Google Scholar 

  14. Trydzenskaya H et al (2011) Novel approach for improved assessment of phenotypic and functional characteristics of BKV-specific T-cell immunity. Transplantation 92(11):1269–1277

    Article  CAS  PubMed  Google Scholar 

  15. Zhou W et al (2007) Functional characterization of BK virus-specific CD4+ T cells with cytotoxic potential in seropositive adults. Viral Immunol 20(3):379–388

    Article  CAS  PubMed  Google Scholar 

  16. Berger C et al (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118(1):294–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bleakley M, Turtle CJ, Riddell SR (2012) Augmentation of anti-tumor immunity by adoptive T-cell transfer after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 5(4):409–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gerdemann U et al (2013) Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther 21(11):2113–2121

  19. Brestrich G et al (2009) Adoptive T-cell therapy of a lung transplanted patient with severe CMV disease and resistance to antiviral therapy. Am J Transplant 9(7):1679–1684

    Article  CAS  PubMed  Google Scholar 

  20. Mackinnon S et al (2008) Adoptive cellular therapy for cytomegalovirus infection following allogeneic stem cell transplantation using virus-specific T cells. Blood Cells Mol Dis 40(1):63–67

    Article  CAS  PubMed  Google Scholar 

  21. Peggs KS et al (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362(9393):1375–1377

    Article  PubMed  Google Scholar 

  22. Blyth E et al (2011) BK virus-specific T cells for use in cellular therapy show specificity to multiple antigens and polyfunctional cytokine responses. Transplantation 92(10):1077–1084

    Article  CAS  PubMed  Google Scholar 

  23. Comoli P et al (2003) Dendritic cells pulsed with polyomavirus BK antigen induce ex vivo polyoma BK virus-specific cytotoxic T-cell lines in seropositive healthy individuals and renal transplant recipients. J Am Soc Nephrol 14(12):3197–3204

    Article  CAS  PubMed  Google Scholar 

  24. Geyeregger R et al (2013) Short-term in vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application. PLoS One 8(4):e59592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zandvliet ML et al (2011) Simultaneous isolation of CD8(+) and CD4(+) T cells specific for multiple viruses for broad antiviral immune reconstitution after allogeneic stem cell transplantation. J Immunother 34(3):307–319

    Article  CAS  PubMed  Google Scholar 

  26. Brestrich G et al (2009) Generation of HCMV-specific T-cell lines from seropositive solid-organ-transplant recipients for adoptive T-cell therapy. J Immunother 32(9):932–940

    Article  PubMed  Google Scholar 

  27. Rambal V et al (2014) Differential influenza H1N1-specific humoral and cellular response kinetics in kidney transplant patients. Med Microbiol Immunol 203(1):35–45

    Article  CAS  PubMed  Google Scholar 

  28. Wolfl M et al (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110(1):201–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Frentsch M et al (2005) Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat Med 11(10):1118–1124

    Article  CAS  PubMed  Google Scholar 

  30. Zandvliet ML et al (2009) Detailed analysis of IFNg response upon activation permits efficient isolation of cytomegalovirus-specific CD8+ T cells for adoptive immunotherapy. J Immunother 32(5):513–523

    Article  CAS  PubMed  Google Scholar 

  31. Wehler TC et al (2008) Rapid identification and sorting of viable virus-reactive CD4(+) and CD8(+) T cells based on antigen-triggered CD137 expression. J Immunol Methods 339(1):23–37

    Article  CAS  PubMed  Google Scholar 

  32. Dong J et al (2007) IL-10 is excluded from the functional cytokine memory of human CD4+ memory T lymphocytes. J Immunol 179(4):2389–2396

    Article  CAS  PubMed  Google Scholar 

  33. Hoffmeister B et al (2003) Detection of antigen-specific T cells by cytokine flow cytometry: the use of whole blood may underestimate frequencies. Eur J Immunol 33(12):3484–3492

    Article  CAS  PubMed  Google Scholar 

  34. Schmueck M et al (2012) Preferential Expansion of human virus-specific multifunctional central memory T cells by partial targeting of the IL-2 receptor signaling pathway: the key role of CD4+ T cells. J Immunol 188(10):5189–5198

  35. Hammer MH et al (2005) HLA type-independent generation of antigen-specific T cells for adoptive immunotherapy. Eur J Immunol 35(7):2250–2258

    Article  CAS  PubMed  Google Scholar 

  36. Hermans IF et al (2004) The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J Immunol Methods 285(1):25–40

    Article  CAS  PubMed  Google Scholar 

  37. Schachtner T et al (2011) BK virus-specific immunity kinetics: a predictor of recovery from polyomavirus BK-associated nephropathy. Am J Transplant 11(11):2443–2452

    Article  CAS  PubMed  Google Scholar 

  38. Dziubianau M et al (2013) TCR repertoire analysis by next generation sequencing allows complex differential diagnosis of T cell-related pathology. Am J Transplant 13(11):2842–2854

  39. Kiecker F et al (2004) Analysis of antigen-specific T-cell responses with synthetic peptides—what kind of peptide for which purpose? Hum Immunol 65(5):523–536

    Article  CAS  PubMed  Google Scholar 

  40. Comoli P et al (2008) T-cell lines specific for peptides of adenovirus hexon protein and devoid of alloreactivity against recipient cells can be obtained from HLA-haploidentical donors. J Immunother 31(6):529–536

    Article  PubMed  Google Scholar 

  41. Lindqvist CA et al (2011) Both CD4+ FoxP3+ and CD4+ FoxP3− T cells from patients with B-cell malignancy express cytolytic markers and kill autologous leukaemic B cells in vitro. Immunology 133(3):296–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Jagger AL et al (2012) FAS/FAS-L dependent killing of activated human monocytes and macrophages by CD4+CD25− responder T cells, but not CD4+CD25+ regulatory T cells. J Autoimmun 38(1):29–38

    Article  CAS  PubMed  Google Scholar 

  43. Ramaswami B et al (2011) The polyomavirus BK large T-antigen-derived peptide elicits an HLA-DR promiscuous and polyfunctional CD4+ T-cell response. Clin Vaccine Immunol 18(5):815–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jellison ER, Kim SK, Welsh RM (2005) Cutting edge: MHC class II-restricted killing in vivo during viral infection. J Immunol 174(2):614–618

    Article  CAS  PubMed  Google Scholar 

  45. Frentsch M et al (2013) CD40L expression permits CD8+ T cells to execute immunologic helper functions. Blood 122(3):405–412

    Article  CAS  PubMed  Google Scholar 

  46. Stark R et al (2013) IL-12-mediated STAT4 signaling and TCR signal strength cooperate in the induction of CD40L in human and mouse CD8+ T cells. Eur J Immunol 43(6):1511–1517

    Article  CAS  PubMed  Google Scholar 

  47. Romer PS et al (2011) Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412. Blood 118(26):6772–6782

    Article  PubMed  Google Scholar 

  48. Rogers PR et al (2001) OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15(3):445–455

    Article  CAS  PubMed  Google Scholar 

  49. Qui HZ et al (2011) CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J Immunol 187(7):3555–3564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Monney L et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536–541

    Article  CAS  PubMed  Google Scholar 

  51. Jelley-Gibbs DM et al (2005) Repeated stimulation of CD4 effector T cells can limit their protective function. J Exp Med 201(7):1101–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Sallusto F et al (1999) Pillars article: two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  CAS  PubMed  Google Scholar 

  53. Sallusto F et al (2014) Pillars article: two subsets of memory T lymphocytes with distinct homing potentials and effector functions. J Immunol 192(3):840–844

    CAS  PubMed  Google Scholar 

  54. Fuller MJ et al (2004) Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. J Immunol 172(7):4204–4214

    Article  CAS  PubMed  Google Scholar 

  55. Schmueck M et al (2012) Preferential expansion of human virus-specific multifunctional central memory T cells by partial targeting of the IL-2 receptor signaling pathway: the key role of CD4+ T cells. J Immunol 188(10):5189–5198

    Article  CAS  PubMed  Google Scholar 

  56. Balduzzi A et al (2011) Polyomavirus JC-targeted T-cell therapy for progressive multiple leukoencephalopathy in a hematopoietic cell transplantation recipient. Bone Marrow Transplant 46(7):987–992

    Article  CAS  PubMed  Google Scholar 

  57. Feuchtinger T et al (2006) Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 134(1):64–76

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jason Millward for a critical reading and editing of the manuscript. The study was supported by Profit (EFRE grant) and Novartis grant to NB.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Babel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 40710 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weist, B.J.D., Schmueck, M., Fuehrer, H. et al. The role of CD4+ T cells in BKV-specific T cell immunity. Med Microbiol Immunol 203, 395–408 (2014). https://doi.org/10.1007/s00430-014-0348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0348-z

Keywords

Navigation