Skip to main content
Log in

Crucial role of PA in virus life cycle and host adaptation of influenza A virus

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The PA protein is the third subunit of the polymerase complex of influenza A virus. Compared with the other two polymerase subunits (PB2 and PB1), its precise functions are less defined. However, in recent years, advances in protein expression and crystallization technologies and also the reverse genetics, greatly accelerate our understanding of the essential role of PA in virus infection. Here, we first review the current literature on this remarkably multifunctional viral protein regarding virus life cycle, including viral RNA transcription and replication, viral genome packaging and assembly. We then discuss the various roles of PA in host adaption in avian species and mammals, general virus–host interaction, and host protein synthesis shutoff. We also review the recent findings about the novel proteins derived from PA. Finally, we discuss the prospects of PA as a target for the development of new antiviral approaches and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cinatl J Jr, Michaelis M, Doerr HW (2007) The threat of avian influenza A (H5N1). Part I: epidemiologic concerns and virulence determinants. Med Microbiol Immunol 196(4):181–190. doi:10.1007/s00430-007-0042-5

    PubMed  Google Scholar 

  2. Horimoto T, Kawaoka Y (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 3(8):591–600. doi:10.1038/nrmicro1208

    CAS  PubMed  Google Scholar 

  3. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437(7060):889–893. doi:10.1038/nature04230

    CAS  PubMed  Google Scholar 

  4. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56(1):152–179

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD Jr, Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325(5937):197–201. doi:10.1126/science.1176225

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Michaelis M, Doerr HW, Cinatl J Jr (2009) Novel swine-origin influenza A virus in humans: another pandemic knocking at the door. Med Microbiol Immunol 198(3):175–183. doi:10.1007/s00430-009-0118-5

    PubMed  Google Scholar 

  7. Wu A, Su C, Wang D, Peng Y, Liu M, Hua S, Li T, Gao GF, Tang H, Chen J, Liu X, Shu Y, Peng D, Jiang T (2013) Sequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host Microbe 14(4):446–452. doi:10.1016/j.chom.2013.09.001

    CAS  PubMed  Google Scholar 

  8. Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, Gog JR, Taubenberger JK, Digard P (2012) Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog 8:e1002998

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Selman M, Dankar SK, Forbes NE, Jia J-J, Brown EG (2012) Adaptive mutation in influenza: a virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerg Microbes Infect 1:e42

  10. Palese P (1977) The genes of influenza virus. Cell 10(1):1–10

    CAS  PubMed  Google Scholar 

  11. Lamb RA, Lai CJ (1980) Sequence of interrupted and uninterrupted mRNAs and cloned DNA coding for the two overlapping nonstructural proteins of influenza virus. Cell 21(2):475–485

    CAS  PubMed  Google Scholar 

  12. Lamb RA, Lai CJ, Choppin PW (1981) Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc Natl Acad Sci USA 78(7):4170–4174

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O’Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7(12):1306–1312. doi:10.1038/nm1201-1306

    CAS  PubMed  Google Scholar 

  14. Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P (2012) An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337(6091):199–204. doi:10.1126/science.1222213

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Muramoto Y, Noda T, Kawakami E, Akkina R, Kawaoka Y (2013) Identification of novel influenza A virus proteins translated from PA mRNA. J Virol 87(5):2455–2462. doi:10.1128/JVI.02656-12

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Krumbholz A, Philipps A, Oehring H, Schwarzer K, Eitner A, Wutzler P, Zell R (2011) Current knowledge on PB1-F2 of influenza A viruses. Med Microbiol Immunol 200(2):69–75. doi:10.1007/s00430-010-0176-8

    CAS  PubMed  Google Scholar 

  17. Naffakh N, Tomoiu A, Rameix-Welti MA, van der Werf S (2008) Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annu Rev Microbiol 62:403–424. doi:10.1146/annurev.micro.62.081307.162746

    CAS  PubMed  Google Scholar 

  18. Manz B, Schwemmle M, Brunotte L (2013) Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol 87(13):7200–7209. doi:10.1128/JVI.00980-13

    PubMed  PubMed Central  Google Scholar 

  19. Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458(7240):914–918. doi:10.1038/nature07745

    CAS  PubMed  Google Scholar 

  20. Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009) Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 458(7240):909–913. doi:10.1038/nature07720

    CAS  PubMed  Google Scholar 

  21. He X, Zhou J, Bartlam M, Zhang R, Ma J, Lou Z, Li X, Li J, Joachimiak A, Zeng Z, Ge R, Rao Z, Liu Y (2008) Crystal structure of the polymerase PA(C)–PB1(N) complex from an avian influenza H5N1 virus. Nature 454(7208):1123–1126. doi:10.1038/nature07120

    CAS  PubMed  Google Scholar 

  22. Obayashi E, Yoshida H, Kawai F, Shibayama N, Kawaguchi A, Nagata K, Tame JR, Park SY (2008) The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature 454(7208):1127–1131. doi:10.1038/nature07225

    CAS  PubMed  Google Scholar 

  23. Hara K, Schmidt FI, Crow M, Brownlee GG (2006) Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 80(16):7789–7798. doi:10.1128/JVI.00600-06

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao C, Lou Z, Guo Y, Ma M, Chen Y, Liang S, Zhang L, Chen S, Li X, Liu Y, Bartlam M, Rao Z (2009) Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center. J Virol 83(18):9024–9030. doi:10.1128/JVI.00911-09

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Datta K, Wolkerstorfer A, Szolar OH, Cusack S, Klumpp K (2013) Characterization of PA-N terminal domain of Influenza A polymerase reveals sequence specific RNA cleavage. Nucleic Acids Res 41(17):8289–8299. doi:10.1093/nar/gkt603

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanz-Ezquerro JJ, Zurcher T, de la Luna S, Ortin J, Nieto A (1996) The amino-terminal one-third of the influenza virus PA protein is responsible for the induction of proteolysis. J Virol 70(3):1905–1911

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Perales B, Sanz-Ezquerro JJ, Gastaminza P, Ortega J, Santaren JF, Ortin J, Nieto A (2000) The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis. J Virol 74(3):1307–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez A, Perez-Gonzalez A, Nieto A (2007) Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II. J Virol 81(10):5315–5324. doi:10.1128/JVI.02129-06

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fodor E, Smith M (2004) The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol 78(17):9144–9153. doi:10.1128/JVI.78.17.9144-9153.2004

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nieto A, de la Luna S, Barcena J, Portela A, Ortin J (1994) Complex structure of the nuclear translocation signal of influenza virus polymerase PA subunit. J Gen Virol 75(Pt 1):29–36

    CAS  PubMed  Google Scholar 

  31. Maier HJ, Kashiwagi T, Hara K, Brownlee GG (2008) Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding. Virology 370(1):194–204. doi:10.1016/j.virol.2007.08.029

    CAS  PubMed  Google Scholar 

  32. Huarte M, Falcon A, Nakaya Y, Ortin J, Garcia-Sastre A, Nieto A (2003) Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses. J Virol 77(10):6007–6013

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hemerka JN, Wang D, Weng Y, Lu W, Kaushik RS, Jin J, Harmon AF, Li F (2009) Detection and characterization of influenza A virus PA–PB2 interaction through a bimolecular fluorescence complementation assay. J Virol 83(8):3944–3955. doi:10.1128/JVI.02300-08

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohtsu Y, Honda Y, Sakata Y, Kato H, Toyoda T (2002) Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol Immunol 46(3):167–175

    CAS  PubMed  Google Scholar 

  35. Perez DR, Donis RO (2001) Functional analysis of PA binding by influenza a virus PB1: effects on polymerase activity and viral infectivity. J Virol 75(17):8127–8136

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Krug RM, Ueda M, Palese P (1975) Temperature-sensitive mutants of influenza WSN virus defective in virus-specific RNA synthesis. J Virol 16(4):790–796

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawaguchi A, Naito T, Nagata K (2005) Involvement of influenza virus PA subunit in assembly of functional RNA polymerase complexes. J Virol 79(2):732–744. doi:10.1128/JVI.79.2.732-744.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fodor E, Crow M, Mingay LJ, Deng T, Sharps J, Fechter P, Brownlee GG (2002) A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76(18):8989–9001

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Regan JF, Liang Y, Parslow TG (2006) Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA. J Virol 80(1):252–261. doi:10.1128/JVI.80.1.252-261.2006

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fodor E, Mingay LJ, Crow M, Deng T, Brownlee GG (2003) A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase promotes the generation of defective interfering RNAs. J Virol 77(8):5017–5020

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hara K, Shiota M, Kido H, Ohtsu Y, Kashiwagi T, Iwahashi J, Hamada N, Mizoue K, Tsumura N, Kato H, Toyoda T (2001) Influenza virus RNA polymerase PA subunit is a novel serine protease with Ser624 at the active site. Genes Cells 6(2):87–97

    CAS  PubMed  Google Scholar 

  42. Liang Y, Huang T, Ly H, Parslow TG (2008) Mutational analyses of packaging signals in influenza virus PA, PB1, and PB2 genomic RNA segments. J Virol 82(1):229–236. doi:10.1128/JVI.01541-07

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao Q, Chou YY, Doganay S, Vafabakhsh R, Ha T, Palese P (2012) The influenza A virus PB2, PA, NP, and M segments play a pivotal role during genome packaging. J Virol 86(13):7043–7051. doi:10.1128/JVI.00662-12

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Seyer R, Hrincius ER, Ritzel D, Abt M, Mellmann A, Marjuki H, Kuhn J, Wolff T, Ludwig S, Ehrhardt C (2012) Synergistic adaptive mutations in the hemagglutinin and polymerase acidic protein lead to increased virulence of pandemic 2009 H1N1 influenza A virus in mice. J Infect Dis 205(2):262–271. doi:10.1093/infdis/jir716

    CAS  PubMed  Google Scholar 

  45. Zhu W, Zhu Y, Qin K, Yu Z, Gao R, Yu H, Zhou J, Shu Y (2012) Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice. PLoS ONE 7(3):e33383. doi:10.1371/journal.pone.0033383

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ilyushina NA, Khalenkov AM, Seiler JP, Forrest HL, Bovin NV, Marjuki H, Barman S, Webster RG, Webby RJ (2010) Adaptation of pandemic H1N1 influenza viruses in mice. J Virol 84(17):8607–8616. doi:10.1128/JVI.00159-10

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakabe S, Ozawa M, Takano R, Iwastuki-Horimoto K, Kawaoka Y (2011) Mutations in PA, NP, and HA of a pandemic (H1N1) 2009 influenza virus contribute to its adaptation to mice. Virus Res 158(1–2):124–129. doi:10.1016/j.virusres.2011.03.022

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shinya K, Watanabe S, Ito T, Kasai N, Kawaoka Y (2007) Adaptation of an H7N7 equine influenza A virus in mice. J Gen Virol 88(Pt 2):547–553. doi:10.1099/vir.0.82411-0

    CAS  PubMed  Google Scholar 

  49. Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 102(51):18590–18595. doi:10.1073/pnas.0507415102

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK (2009) The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol 83(23):12325–12335. doi:10.1128/JVI.01373-09

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nam JH, Kim EH, Song D, Choi YK, Kim JK, Poo H (2011) Emergence of mammalian species-infectious and -pathogenic avian influenza H6N5 virus with no evidence of adaptation. J Virol 85(24):13271–13277. doi:10.1128/JVI.05038-11

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown EG, Liu H, Kit LC, Baird S, Nesrallah M (2001) Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc Natl Acad Sci USA 98(12):6883–6888. doi:10.1073/pnas.111165798

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim JH, Hatta M, Watanabe S, Neumann G, Watanabe T, Kawaoka Y (2010) Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J Gen Virol 91(Pt 5):1284–1289. doi:10.1099/vir.0.018143-0

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Manz B, Brunotte L, Reuther P, Schwemmle M (2012) Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat Commun 3:802. doi:10.1038/ncomms1804

    PubMed  Google Scholar 

  55. Sun Y, Xu Q, Shen Y, Liu L, Wei K, Sun H, Pu J, Chang KC, Liu J (2014) Naturally occurring mutations in the PA gene are key contributors to increased virulence of pandemic H1N1/09 influenza virus in mice. J Virol. doi:10.1128/JVI.03158-13

    Google Scholar 

  56. Hu J, Hu Z, Song Q, Gu M, Liu X, Wang X, Hu S, Chen C, Liu H, Liu W, Chen S, Peng D (2013) The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. J Virol 87(5):2660–2672. doi:10.1128/JVI.02891-12

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mehle A, Dugan VG, Taubenberger JK, Doudna JA (2012) Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J Virol 86(3):1750–1757. doi:10.1128/JVI.06203-11

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Llompart CM, Nieto A, Rodriguez-Frandsen A (2014) Specific residues of PB2 and PA influenza virus polymerase subunits confer the ability for RNA polymerase II degradation and virus pathogenicity in mice. J Virol 88(6):3455–3463. doi:10.1128/JVI.02263-13

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hiromoto Y, Saito T, Lindstrom S, Nerome K (2000) Characterization of low virulent strains of highly pathogenic A/Hong Kong/156/97 (H5N1) virus in mice after passage in embryonated hens’ eggs. Virology 272(2):429–437. doi:10.1006/viro.2000.0371

    CAS  PubMed  Google Scholar 

  60. de Wit E, Munster VJ, van Riel D, Beyer WE, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA (2010) Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol 84(3):1597–1606. doi:10.1128/JVI.01783-09

    PubMed  PubMed Central  Google Scholar 

  61. Labadie K, Dos Santos Afonso E, Rameix-Welti MA, van der Werf S, Naffakh N (2007) Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology 362(2):271–282. doi:10.1016/j.virol.2006.12.027

    CAS  PubMed  Google Scholar 

  62. Chen LM, Davis CT, Zhou H, Cox NJ, Donis RO (2008) Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PLoS Pathog 4(5):e1000072. doi:10.1371/journal.ppat.1000072

    PubMed  PubMed Central  Google Scholar 

  63. Li C, Hatta M, Nidom CA, Muramoto Y, Watanabe S, Neumann G, Kawaoka Y (2010) Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci USA 107(10):4687–4692. doi:10.1073/pnas.0912807107

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hara K, Nakazono Y, Kashiwagi T, Hamada N, Watanabe H (2013) Co-incorporation of the PB2 and PA polymerase subunits from human H3N2 influenza virus is a critical determinant of the replication of reassortant ribonucleoprotein complexes. J Gen Virol 94(Pt 11):2406–2416. doi:10.1099/vir.0.053959-0

    CAS  PubMed  Google Scholar 

  65. Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, Muramoto Y, Tamura D, Sakai-Tagawa Y, Noda T, Sakabe S, Imai M, Hatta Y, Watanabe S, Li C, Yamada S, Fujii K, Murakami S, Imai H, Kakugawa S, Ito M, Takano R, Iwatsuki-Horimoto K, Shimojima M, Horimoto T, Goto H, Takahashi K, Makino A, Ishigaki H, Nakayama M, Okamatsu M, Warshauer D, Shult PA, Saito R, Suzuki H, Furuta Y, Yamashita M, Mitamura K, Nakano K, Nakamura M, Brockman-Schneider R, Mitamura H, Yamazaki M, Sugaya N, Suresh M, Ozawa M, Neumann G, Gern J, Kida H, Ogasawara K, Kawaoka Y (2009) In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460(7258):1021–1025. doi:10.1038/nature08260

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun Y, Qin K, Wang J, Pu J, Tang Q, Hu Y, Bi Y, Zhao X, Yang H, Shu Y, Liu J (2011) High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci USA 108(10):4164–4169. doi:10.1073/pnas.1019109108

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Peiris JS, Poon LL, Guan Y (2009) Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. J Clin Virol 45(3):169–173. doi:10.1016/j.jcv.2009.06.006

    PubMed  Google Scholar 

  68. Wright F, Neumann G, Kawaoka Y (2007) Orthomyxoviruses. In: Knipe D, Howley P, Griffin D et al (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1692–1740

    Google Scholar 

  69. Hulse-Post DJ, Franks J, Boyd K, Salomon R, Hoffmann E, Yen HL, Webby RJ, Walker D, Nguyen TD, Webster RG (2007) Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks. J Virol 81(16):8515–8524. doi:10.1128/JVI.00435-07

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Song J, Feng H, Xu J, Zhao D, Shi J, Li Y, Deng G, Jiang Y, Li X, Zhu P, Guan Y, Bu Z, Kawaoka Y, Chen H (2011) The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks. J Virol 85(5):2180–2188. doi:10.1128/JVI.01975-10

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu J, Hu Z, Mo Y, Wu Q, Cui Z, Duan Z, Huang J, Chen H, Chen Y, Gu M, Wang X, Hu S, Liu H, Liu W, Liu X (2013) The PA and HA gene-mediated high viral load and intense innate immune response in the brain contribute to the high pathogenicity of H5N1 avian influenza virus in mallard ducks. J Virol 87(20):11063–11075. doi:10.1128/JVI.00760-13

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kajihara M, Sakoda Y, Soda K, Minari K, Okamatsu M, Takada A, Kida H (2013) The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks. Virol J 10:45. doi:10.1186/1743-422X-10-45

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ruigrok RW, Crepin T, Hart DJ, Cusack S (2010) Towards an atomic resolution understanding of the influenza virus replication machinery. Curr Opin Struct Biol 20(1):104–113. doi:10.1016/j.sbi.2009.12.007

    CAS  PubMed  Google Scholar 

  74. Bouloy M, Plotch SJ, Krug RM (1978) Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci USA 75(10):4886–4890

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap(m7G pppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23(3):847–858

    CAS  PubMed  Google Scholar 

  76. Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ, Cusack S (2008) The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15(5):500–506. doi:10.1038/nsmb.1421

    CAS  PubMed  Google Scholar 

  77. Ulmanen I, Broni B, Krug RM (1983) Influenza virus temperature-sensitive cap (m7G pppNm)-dependent endonuclease. J Virol 45(1):27–35

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Biswas SK, Nayak DP (1994) Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol 68(3):1819–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakagawa Y, Oda K, Nakada S (1996) The PB1 subunit alone can catalyze cRNA synthesis, and the PA subunit in addition to the PB1 subunit is required for viral RNA synthesis in replication of the influenza virus genome. J Virol 70(9):6390–6394

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lamb RA, Choppin PW (1983) The gene structure and replication of influenza virus. Annu Rev Biochem 52:467–506. doi:10.1146/annurev.bi.52.070183.002343

    CAS  PubMed  Google Scholar 

  81. Deng T, Sharps JL, Brownlee GG (2006) Role of the influenza virus heterotrimeric RNA polymerase complex in the initiation of replication. J Gen Virol 87(Pt 11):3373–3377. doi:10.1099/vir.0.82199-0

    CAS  PubMed  Google Scholar 

  82. Zhang S, Wang J, Wang Q, Toyoda T (2010) Internal initiation of influenza virus replication of viral RNA and complementary RNA in vitro. J Biol Chem 285(52):41194–41201. doi:10.1074/jbc.M110.130062

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vreede FT, Gifford H, Brownlee GG (2008) Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription. J Virol 82(14):6902–6910. doi:10.1128/JVI.00627-08

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kowalinski E, Zubieta C, Wolkerstorfer A, Szolar OH, Ruigrok RW, Cusack S (2012) Structural analysis of specific metal chelating inhibitor binding to the endonuclease domain of influenza pH1N1 (2009) polymerase. PLoS Pathog 8(8):e1002831. doi:10.1371/journal.ppat.1002831

    CAS  PubMed  PubMed Central  Google Scholar 

  85. DuBois RM, Slavish PJ, Baughman BM, Yun MK, Bao J, Webby RJ, Webb TR, White SW (2012) Structural and biochemical basis for development of influenza virus inhibitors targeting the PA endonuclease. PLoS Pathog 8(8):e1002830. doi:10.1371/journal.ppat.1002830

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wunderlich K, Mayer D, Ranadheera C, Holler AS, Manz B, Martin A, Chase G, Tegge W, Frank R, Kessler U, Schwemmle M (2009) Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication. PLoS ONE 4(10):e7517. doi:10.1371/journal.pone.0007517

    PubMed  PubMed Central  Google Scholar 

  87. Wunderlich K, Juozapaitis M, Ranadheera C, Kessler U, Martin A, Eisel J, Beutling U, Frank R, Schwemmle M (2011) Identification of high-affinity PB1-derived peptides with enhanced affinity to the PA protein of influenza A virus polymerase. Antimicrob Agents Chemother 55(2):696–702. doi:10.1128/AAC.01419-10

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Guu TS, Dong L, Wittung-Stafshede P, Tao YJ (2008) Mapping the domain structure of the influenza A virus polymerase acidic protein (PA) and its interaction with the basic protein 1 (PB1) subunit. Virology 379(1):135–142. doi:10.1016/j.virol.2008.06.022

    CAS  PubMed  Google Scholar 

  89. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403):420–428. doi:10.1038/nature10831

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shelton H, Roberts KL, Molesti E, Temperton N, Barclay WS (2013) Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J Gen Virol 94(Pt 6):1220–1229. doi:10.1099/vir.0.050526-0

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yen HL, Aldridge JR, Boon AC, Ilyushina NA, Salomon R, Hulse-Post DJ, Marjuki H, Franks J, Boltz DA, Bush D, Lipatov AS, Webby RJ, Rehg JE, Webster RG (2009) Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci USA 106(1):286–291. doi:10.1073/pnas.0811052106

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hirst GK (1947) Studies on the Mechanism of Adaptation of Influenza Virus to Mice. J Exp Med 86(5):357–366

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, Brown EG, Holtzman MJ, Brody SL (2006) Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol 80(15):7469–7480. doi:10.1128/JVI.02677-05

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hatta M, Hatta Y, Kim JH, Watanabe S, Shinya K, Nguyen T, Lien PS, Le QM, Kawaoka Y (2007) Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog 3(10):1374–1379. doi:10.1371/journal.ppat.0030133

    CAS  PubMed  Google Scholar 

  95. Munster VJ, de Wit E, van Riel D, Beyer WE, Rimmelzwaan GF, Osterhaus AD, Kuiken T, Fouchier RA (2007) The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J Infect Dis 196(2):258–265. doi:10.1086/518792

    CAS  PubMed  Google Scholar 

  96. Maines TR, Lu XH, Erb SM, Edwards L, Guarner J, Greer PW, Nguyen DC, Szretter KJ, Chen LM, Thawatsupha P, Chittaganpitch M, Waicharoen S, Nguyen DT, Nguyen T, Nguyen HH, Kim JH, Hoang LT, Kang C, Phuong LS, Lim W, Zaki S, Donis RO, Cox NJ, Katz JM, Tumpey TM (2005) Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol 79(18):11788–11800. doi:10.1128/JVI.79.18.11788-11800.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL, Hulse-Post DJ, Humberd J, Trichet M, Rehg JE, Webby RJ, Webster RG, Hoffmann E (2006) The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 203(3):689–697. doi:10.1084/jem.20051938

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y (2004) PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320(2):258–266. doi:10.1016/j.virol.2003.11.030

    CAS  PubMed  Google Scholar 

  99. Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67(4):1761–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79(18):12058–12064. doi:10.1128/JVI.79.18.12058-12064.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gabriel G, Herwig A, Klenk HD (2008) Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog 4(2):e11. doi:10.1371/journal.ppat.0040011

    PubMed  PubMed Central  Google Scholar 

  102. Vreede FT, Chan AY, Sharps J, Fodor E (2010) Mechanisms and functional implications of the degradation of host RNA polymerase II in influenza virus infected cells. Virology 396(1):125–134. doi:10.1016/j.virol.2009.10.003

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vreede FT, Fodor E (2010) The role of the influenza virus RNA polymerase in host shut-off. Virulence 1(5):436–439. doi:10.4161/viru.1.5.12967

    PubMed  PubMed Central  Google Scholar 

  104. Kida H, Yanagawa R, Matsuoka Y (1980) Duck influenza lacking evidence of disease signs and immune response. Infect Immun 30(2):547–553

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Alexander DJ, Parsons G, Manvell RJ (1986) Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail. Avian Pathol 15(4):647–662. doi:10.1080/03079458608436328

    CAS  PubMed  Google Scholar 

  106. Ellis TM, Bousfield RB, Bissett LA, Dyrting KC, Luk GS, Tsim ST, Sturm-Ramirez K, Webster RG, Guan Y, Malik Peiris JS (2004) Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002. Avian Pathol 33(5):492–505. doi:10.1080/03079450400003601

    PubMed  Google Scholar 

  107. Sturm-Ramirez KM, Ellis T, Bousfield B, Bissett L, Dyrting K, Rehg JE, Poon L, Guan Y, Peiris M, Webster RG (2004) Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J Virol 78(9):4892–4901

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bragstad K, Jorgensen PH, Handberg K, Hammer AS, Kabell S, Fomsgaard A (2007) First introduction of highly pathogenic H5N1 avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe. Virol J 4:43. doi:10.1186/1743-422X-4-43

    PubMed  PubMed Central  Google Scholar 

  109. Pantin-Jackwood MJ, Swayne DE (2007) Pathobiology of Asian highly pathogenic avian influenza H5N1 virus infections in ducks. Avian Dis 51(1 Suppl):250–259

    PubMed  Google Scholar 

  110. Swayne DE (2007) Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds. Avian Dis 51(1 Suppl):242–249

    PubMed  Google Scholar 

  111. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF (2005) Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309(5738):1206. doi:10.1126/science.1115273

    CAS  PubMed  Google Scholar 

  112. Marjuki H, Scholtissek C, Franks J, Negovetich NJ, Aldridge JR, Salomon R, Finkelstein D, Webster RG (2010) Three amino acid changes in PB1-F2 of highly pathogenic H5N1 avian influenza virus affect pathogenicity in mallard ducks. Arch Virol 155(6):925–934. doi:10.1007/s00705-010-0666-4

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Schmolke M, Manicassamy B, Pena L, Sutton T, Hai R, Varga ZT, Hale BG, Steel J, Perez DR, Garcia-Sastre A (2011) Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species. PLoS Pathog 7(8):e1002186. doi:10.1371/journal.ppat.1002186

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bingham J, Green DJ, Lowther S, Klippel J, Burggraaf S, Anderson DE, Wibawa H, Hoa DM, Long NT, Vu PP, Middleton DJ, Daniels PW (2009) Infection studies with two highly pathogenic avian influenza strains (Vietnamese and Indonesian) in Pekin ducks (Anas platyrhynchos), with particular reference to clinical disease, tissue tropism and viral shedding. Avian Pathol 38(4):267–278. doi:10.1080/03079450903055371

    PubMed  Google Scholar 

  115. Kishida N, Sakoda Y, Isoda N, Matsuda K, Eto M, Sunaga Y, Umemura T, Kida H (2005) Pathogenicity of H5 influenza viruses for ducks. Arch Virol 150(7):1383–1392. doi:10.1007/s00705-004-0473-x

    CAS  PubMed  Google Scholar 

  116. Londt BZ, Nunez A, Banks J, Nili H, Johnson LK, Alexander DJ (2008) Pathogenesis of highly pathogenic avian influenza A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally. Avian Pathol 37(6):619–627. doi:10.1080/03079450802499126

    CAS  PubMed  Google Scholar 

  117. Bradel-Tretheway BG, Mattiacio JL, Krasnoselsky A, Stevenson C, Purdy D, Dewhurst S, Katze MG (2011) Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. J Virol 85(17):8569–8581. doi:10.1128/JVI.00496-11

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Huarte M, Sanz-Ezquerro JJ, Roncal F, Ortin J, Nieto A (2001) PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol 75(18):8597–8604

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Perez-Gonzalez A, Rodriguez A, Huarte M, Salanueva IJ, Nieto A (2006) hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J Mol Biol 362(5):887–900. doi:10.1016/j.jmb.2006.07.085

    CAS  PubMed  Google Scholar 

  120. Rodriguez A, Perez-Gonzalez A, Nieto A (2011) Cellular human CLE/C14orf166 protein interacts with influenza virus polymerase and is required for viral replication. J Virol 85(22):12062–12066. doi:10.1128/JVI.00684-11

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M, Garcia-Sastre A, tenOever BR (2010) Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc Natl Acad Sci USA 107(25):11525–11530. doi:10.1073/pnas.1001984107

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Perez JT, Zlatev I, Aggarwal S, Subramanian S, Sachidanandam R, Kim B, Manoharan M, tenOever BR (2012) A small-RNA enhancer of viral polymerase activity. J Virol 86(24):13475–13485. doi:10.1128/JVI.02295-12

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kawaguchi A, Nagata K (2007) De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EMBO J 26(21):4566–4575. doi:10.1038/sj.emboj.7601881

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hsu WB, Shih JL, Shih JR, Du JL, Teng SC, Huang LM, Wang WB (2013) Cellular protein HAX1 interacts with the influenza A virus PA polymerase subunit and impedes its nuclear translocation. J Virol 87(1):110–123. doi:10.1128/JVI.00939-12

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Yap SV, Koontz JM, Kontrogianni-Konstantopoulos A (2011) HAX-1: a family of apoptotic regulators in health and disease. J Cell Physiol 226(11):2752–2761. doi:10.1002/jcp.22638

    CAS  PubMed  Google Scholar 

  126. Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, Fodor E (2006) Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol 80(24):11911–11919. doi:10.1128/JVI.01565-06

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kuo RL, Krug RM (2009) Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells. J Virol 83(4):1611–1616. doi:10.1128/JVI.01491-08

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Katze MG, Detjen BM, Safer B, Krug RM (1986) Translational control by influenza virus: suppression of the kinase that phosphorylates the alpha subunit of initiation factor eIF-2 and selective translation of influenza viral mRNAs. Mol Cell Biol 6(5):1741–1750

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Katze MG, DeCorato D, Krug RM (1986) Cellular mRNA translation is blocked at both initiation and elongation after infection by influenza virus or adenovirus. J Virol 60(3):1027–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sanz-Ezquerro JJ, de la Luna S, Ortin J, Nieto A (1995) Individual expression of influenza virus PA protein induces degradation of coexpressed proteins. J Virol 69(4):2420–2426

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Desmet EA, Bussey KA, Stone R, Takimoto T (2013) Identification of the N-terminal domain of the influenza virus PA responsible for the suppression of host protein synthesis. J Virol 87(6):3108–3118. doi:10.1128/JVI.02826-12

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252(2):324–330

    CAS  PubMed  Google Scholar 

  133. Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, Garcia-Sastre A (2000) Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 74(17):7989–7996

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Fortes P, Beloso A, Ortin J (1994) Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J 13(3):704–712

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Satterly N, Tsai PL, van Deursen J, Nussenzveig DR, Wang Y, Faria PA, Levay A, Levy DE, Fontoura BM (2007) Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci USA 104(6):1853–1858. doi:10.1073/pnas.0610977104

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Salvatore M, Basler CF, Parisien JP, Horvath CM, Bourmakina S, Zheng H, Muster T, Palese P, Garcia-Sastre A (2002) Effects of influenza A virus NS1 protein on protein expression: the NS1 protein enhances translation and is not required for shutoff of host protein synthesis. J Virol 76(3):1206–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314(5801):997–1001. doi:10.1126/science.1132998

    CAS  PubMed  Google Scholar 

  138. Opitz B, Rejaibi A, Dauber B, Eckhard J, Vinzing M, Schmeck B, Hippenstiel S, Suttorp N, Wolff T (2007) IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol 9(4):930–938. doi:10.1111/j.1462-5822.2006.00841.x

    CAS  PubMed  Google Scholar 

  139. Varga ZT, Grant A, Manicassamy B, Palese P (2012) Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. J Virol 86(16):8359–8366. doi:10.1128/JVI.01122-12

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Varga ZT, Ramos I, Hai R, Schmolke M, Garcia-Sastre A, Fernandez-Sesma A, Palese P (2011) The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog 7(6):e1002067. doi:10.1371/journal.ppat.1002067

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liedmann S, Hrincius ER, Anhlan D, McCullers JA, Ludwig S, Ehrhardt C (2014) New virulence determinants contribute to the enhanced immune response and reduced virulence of an influenza A virus A/PR8/34 variant. J Infect Dis 209(4):532–541. doi:10.1093/infdis/jit463

    CAS  PubMed  Google Scholar 

  142. Sakabe S, Takano R, Nagamura-Inoue T, Yamashita N, Nidom CA, Le Quynh M, Iwatsuki-Horimoto K, Kawaoka Y (2013) Differences in cytokine production in human macrophages and in virulence in mice are attributable to the acidic polymerase protein of highly pathogenic influenza A virus subtype H5N1. J Infect Dis 207(2):262–271. doi:10.1093/infdis/jis523

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Huang CH, Chen CJ, Yen CT, Yu CP, Huang PN, Kuo RL, Lin SJ, Chang CK, Shih SR (2013) Caspase-1 deficient mice are more susceptible to influenza A virus infection with PA variation. J Infect Dis 208(11):1898–1905. doi:10.1093/infdis/jit381

    CAS  PubMed  Google Scholar 

  144. De Clercq E (2006) Antiviral agents active against influenza A viruses. Nat Rev Drug Discov 5(12):1015–1025. doi:10.1038/nrd2175

    PubMed  Google Scholar 

  145. Belshe RB, Burk B, Newman F, Cerruti RL, Sim IS (1989) Resistance of influenza A virus to amantadine and rimantadine: results of one decade of surveillance. J Infect Dis 159(3):430–435

    CAS  PubMed  Google Scholar 

  146. Krumbholz A, Schmidtke M, Bergmann S, Motzke S, Bauer K, Stech J, Durrwald R, Wutzler P, Zell R (2009) High prevalence of amantadine resistance among circulating European porcine influenza A viruses. J Gen Virol 90(Pt 4):900–908. doi:10.1099/vir.2008.007260-0

    CAS  PubMed  Google Scholar 

  147. Herlocher ML, Truscon R, Elias S, Yen HL, Roberts NA, Ohmit SE, Monto AS (2004) Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. J Infect Dis 190(9):1627–1630. doi:10.1086/424572

    CAS  PubMed  Google Scholar 

  148. Kumaki Y, Day CW, Smee DF, Morrey JD, Barnard DL (2011) In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections. Antiviral Res 92(2):329–340. doi:10.1016/j.antiviral.2011.09.001

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sangawa H, Komeno T, Nishikawa H, Yoshida A, Takahashi K, Nomura N, Furuta Y (2013) Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase. Antimicrob Agents Chemother 57(11):5202–5208. doi:10.1128/AAC.00649-13

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K (2005) Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother 49(3):981–986. doi:10.1128/AAC.49.3.981-986.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Perez DR, Donis RO (1995) A 48-amino-acid region of influenza A virus PB1 protein is sufficient for complex formation with PA. J Virol 69(11):6932–6939

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Tintori C, Laurenzana I, Fallacara AL, Kessler U, Pilger B, Stergiou L, Botta M (2014) High-throughput docking for the identification of new influenza A virus polymerase inhibitors targeting the PA-PB1 protein–protein interaction. Bioorg Med Chem Lett 24(1):280–282. doi:10.1016/j.bmcl.2013.11.019

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shenqiang Ge for good suggestions on constructing the draft of this review, and Zenglei Hu for critical discussion of the manuscript. This work was supported by the Major State Basic Research Development Program of China (973 Program) (Grant Number 2011CB505003), by the Chinese National High-tech R&D Program (863 Program, Grant Number 2011AA10A200), by the earmarked fund for Modern Agro-industry Technology Research System (nycytx-41-G07), by the National Natural Science Foundation of China (31101827) and by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Liu, X. Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 204, 137–149 (2015). https://doi.org/10.1007/s00430-014-0349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0349-y

Keywords

Navigation