Skip to main content

Advertisement

Log in

Identification of specific feed-forward apoptosis mechanisms and associated higher survival rates for low grade glioma and lung squamous cell carcinoma

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

The mechanisms of cell proliferation due to the overexpression of certain transcription factors (TFs) have been well documented in the cancer setting. However, many of these same TFs have pro-apoptotic effects, particularly when expressed or activated at high levels, a process referred to as feed-forward apoptosis (FFA). To determine whether cancers could be stratified on the basis of specific FFA signatures, RNASeq data representing samples from the cancer genome atlas were analyzed, revealing that high expression of the pro-proliferative TFs, MYC and YY1, is associated with a favorable outcome in low-grade glioma (LGG) and lung squamous cell carcinoma (LUSC), respectively. Analysis of the RNASeq data also led to the identification of specific apoptosis-effector genes whose expression levels correlate with increased survival rates, for both LGG and LUSC. Although FFA has been demonstrated as a general effect in cancer, in this report, for the first time, results identify specific TFs and their responsive effector genes that distinguish subsets of cancer samples undergoing more or less of a FFA process in a way that is associated with distinct patient survival rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barton K, Muthusamy N, Chanyangam M, Fischer C, Clendenin C, Leiden JM (1996) Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 379:81–85

    Article  CAS  PubMed  Google Scholar 

  • Berry DE, Lu Y, Schmidt B, Fallon PG, O’Connell C, Hu SX, Xu HJ, Blanck G (1996) Retinoblastoma protein inhibits IFN-gamma induced apoptosis. Oncogene 12:1809–1819

    CAS  PubMed  Google Scholar 

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    Article  PubMed  Google Scholar 

  • Ding X, Pan H, Li J, Zhong Q, Chen X, Dry SM, Wang CY (2013) Epigenetic activation of AP1 promotes squamous cell carcinoma metastasis. Sci Signal 6:ra28 (21–13, S20–S15)

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobbelstein M, Sorensen CS (2015) Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 14:405–423

    Article  CAS  PubMed  Google Scholar 

  • Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WG Jr, Livingston DM, Orkin SH, Greenberg ME (1996) E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85:549–561

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Lutz W, Schwab M, Debatin KM (1999) MycN sensitizes neuroblastoma cells for drug-induced apoptosis. Oncogene 18:1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Sheng Q, Li J, Ye F, Samuels DC, Shyr Y (2013) Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PloS one 8:e71462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Jiang S, Zhao J, Zhu D, Zhao X, Cai JC, Zhang SQ (2017) N-Myc-interacting protein negatively regulates TNF-alpha-induced NF-kappaB transcriptional activity by sequestering NF-kappaB/p65 in the cytoplasm. Sci Rep 7:14579

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi B, Rastogi S, Morris M, Carastro LM, DeCook C, Seto E, Chellappan SP (2007) Differential regulation of human YY1 and caspase 7 promoters by prohibitin through E2F1 and p53 binding sites. Biochem J 401:155–166

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Liu P, Su J, Song X, Wang S (2017) Activation of nuclear beta-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem Biophys Res Commun 493:1573–1580

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Hallstrom TC (2013) The nuclear protein UHRF2 is a direct target of the transcription factor E2F1 in the induction of apoptosis. J Biol Chem 288:23833–23843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Liang X, Issaenko OA, Hallstrom TC (2011) Jab1/CSN5 mediates E2F dependent expression of mitotic and apoptotic but not DNA replication targets. Cell Cycle 10:3317–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro JA, Blanck G (2014) Functionally distinct gene classes as bigger or smaller transcription factor traps: a possible stochastic component to sequential gene expression programs in cancer. Gene 536:398–406

    Article  CAS  PubMed  Google Scholar 

  • Mauro JA, Butler SN, Ramsamooj M, Blanck G (2015) Copy number loss or silencing of apoptosis-effector genes in cancer. Gene 554:50–57

    Article  CAS  PubMed  Google Scholar 

  • Mauro JA, Yavorski JM, Blanck G (2017) Stratifying melanoma and breast cancer TCGA datasets on the basis of the CNV of transcription factor binding sites common to proliferation- and apoptosis-effector genes. Gene 614:37–48

    Article  CAS  PubMed  Google Scholar 

  • McKay BC, Becerril C, Spronck JC, Ljungman M (2002) Ultraviolet light-induced apoptosis is associated with S-phase in primary human fibroblasts. DNA Repair 1:811–820

    Article  CAS  PubMed  Google Scholar 

  • Oswald F, Dobner T, Lipp M (1996) The E2F transcription factor activates a replication-dependent human H2A gene in early S phase of the cell cycle. Mol Cell Biol 16:1889–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantazis P, Early JA, Kozielski AJ, Mendoza JT, Hinz HR, Giovanella BC (1993) Regression of human breast carcinoma tumors in immunodeficient mice treated with 9-nitrocamptothecin: differential response of nontumorigenic and tumorigenic human breast cells in vitro. Cancer Res 53:1577–1582

    CAS  PubMed  Google Scholar 

  • Ping Z, Siegal GP, Almeida JS, Schnitt SJ, Shen D (2014) Mining genome sequencing data to identify the genomic features linked to breast cancer histopathology. J Pathol Inform 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Resendiz-Martinez J, Asbun-Bojalil J, Huerta-Yepez S, Vega M (2017) Correlation of the expression of YY1 and Fas cell surface death receptor with apoptosis of peripheral blood mononuclear cells, and the development of multiple organ dysfunction in children with sepsis. Mol Med Rep 15:2433–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, Lee BT, Barber GP, Harte RA, Diekhans M, Long JC, Wilder SP, Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ (2013) ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res 41:D56–D63

    Article  CAS  PubMed  Google Scholar 

  • Slansky JE, Li Y, Kaelin WG, Farnham PJ (1993) A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol 13:1610–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speir ML, Zweig AS, Rosenbloom KR, Raney BJ, Paten B, Nejad P, Lee BT, Learned K, Karolchik D, Hinrichs AS, Heitner S, Harte RA, Haeussler M, Guruvadoo L, Fujita PA, Eisenhart C, Diekhans M, Clawson H, Casper J, Barber GP, Haussler D, Kuhn RM, Kent WJ (2016) The UCSC genome browser database: 2016 update. Nucleic Acids Res 44:D717–D725

    Article  CAS  PubMed  Google Scholar 

  • Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Patel AA, Tang L, Silver NL, Lindemann A, Takahashi H, Jaksik R, Rao X, Kalu NN, Chen TC, Wang J, Frederick MJ, Johnson FM, Gleber-Netto F, Fu S, Kimmel M, Wang J, Hittelman WN, Pickering CR, Myers JN, Osman AA (2017) Replication stress leading to apoptosis within the S-phase contributes to synergism between vorinostat and AZD1775 in HNSCC harboring high risk TP53 mutation. Clin Cancer Res 23:6541–6554

    Article  CAS  PubMed  Google Scholar 

  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Levine AJ (1994) p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91:3602–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ (1996) Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85:537–548

    Article  CAS  PubMed  Google Scholar 

  • Yavorski JM, Blanck G (2016) TCGA: Increased oncoprotein coding region mutations correlate with a greater expression of apoptosis-effector genes and a positive outcome for stomach adenocarcinoma. Cell Cycle 15:2157–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Zhu Y, Yang C, Liu X, Peng YP, Jiang KR, Miao Y, Xu ZK (2016) Yin Yang-1 increases apoptosis through Bax activation in pancreatic cancer cells. Oncotarget 7:28498–28509

    PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Zhu Y, Zhang XF, Liu DF, Wang Y, Yang C, Shi GD, Peng YP, Zhang K, Tian L, Miao Y, Jiang KR (2017a) Yin Yang-1 suppresses pancreatic ductal adenocarcinoma cell proliferation and tumor growth by regulating SOX2OT-SOX2 axis. Cancer Lett 408:144–154

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Feng B, Zhu F, Yu C, Lu J, Pan M, He Z, Wangpu X, Sun J, Yang X (2017b) N-myc downstream-regulated gene 1 promotes apoptosis in colorectal cancer via up-regulating death receptor 4. Oncotarget 8:82593–82608

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DS was a recipient of a RISE fellowship, Morsani College of Medicine; authors would like to acknowledge the support of the taxpayers of the State of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Blanck.

Ethics declarations

Conflict of interest

Authors have nothing to declare.

Ethical approval

The above work is classified as “non-human subjects research”, due to the de-identified aspects of patient samples. The project and access to raw RNASeq files was approved by the database of Genotypes and Phenotypes (Project #6300, George Blanck).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11479 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikaria, D., Tu, Y.N., Fisler, D.A. et al. Identification of specific feed-forward apoptosis mechanisms and associated higher survival rates for low grade glioma and lung squamous cell carcinoma. J Cancer Res Clin Oncol 144, 459–468 (2018). https://doi.org/10.1007/s00432-017-2569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-017-2569-1

Keywords

Navigation