Skip to main content
Log in

Susceptibility of Giardia lamblia to Hovenia dulcis extracts

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Giardia lamblia is the causative agent of giardiasis, a common parasitic infection of the human and animal digestive tract. Although several drugs have been available to treat this infection, they present unpleasant side effects or cytotoxicity. In order to find a more natural treatment for the disease, we analyzed the effects of the methanolic extract and three fractions obtained from Hovenia dulcis Thunb. (Rhamnaceae) leaves on G. lamblia. Comparing all fractions, dichloromethane was more efficient in reducing Giardia growth. The exposition of G. lamblia to this fraction lead to degenerations in the surface, modifications in the cell shape and alterations in the localization of nuclei. Besides that, the adhesion of G. lamblia was also altered. Experiments revealed that the obtained fraction did not present cytotoxic effects in mammalian cells. In summary, dichloromethane fraction has strong antigiardial effects and could become an important new substance for the treatment of giardiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475

    Article  PubMed  Google Scholar 

  • Ali BH (1989) Pharmacology and toxicity of furazolidone in man and animals: some recent research. Gen Pharmacol 20:557–563

    PubMed  Google Scholar 

  • Ankli A, Heinrich M, Bork P, Wolfram L, Bauerfeind P, Brun R, Schmid C, Weiss C, Bruggisser R, Gertsch J, Wasescha M, Sticher O (2002) Yucatec Mayan medicinal plants: evaluation based on indigenous uses. J Ethnopharmacol 79:43–52

    Article  PubMed  Google Scholar 

  • Calzada F, Meckes M, Cedillo-Rivera R (1999) Antiamoebic and antigiardial activity of plant flavonoids. Planta Med 65:78–80

    PubMed  Google Scholar 

  • Campanati L, Monteiro-Leal LH (2002) The effects of the antiprotosoal drugs metronidazole and furazolidone in trophozoits of Giardia lamblia (P1 strain). Parasitol Res 88:80–85

    PubMed  Google Scholar 

  • Campanati L, Gadelha APR, Monteiro-Leal LH (2001) Electron and video-microscopy analysis of the in vitro effects of pyrantel pamoate on Giardia lamblia. Exp Parasitol 97:9–14

    Article  PubMed  Google Scholar 

  • Campanati L, Holloshi A, Troester H, Spring H, Souza W, Monteiro-Leal LH (2002) Video-microscopy observations of fast dynamic process in the protozoon Giardia lamblia. Cell Motil Cytoskeleton 51:213–214

    Article  PubMed  Google Scholar 

  • Carvalho KP, Monteiro-Leal LH (2004) The caudal complex of Giardia lamblia and its relation to motility. Exp Parasitol 108:154–162

    Article  PubMed  Google Scholar 

  • Castro TC, Pellicione VLB, Figueiredo MR, Soares ROA, Bozza MT, Viana VRC, Albarello N, Figueiredo SFL (2002) Atividade antineoplásica e tripanocida de Hovenia dulcis Thunb. cultivada in vivo e in vitro. Rev Bras Farmacog 12:96–99

    Google Scholar 

  • Chavez B, Cedillo-Rivera R, Martinez-Palomo A (1992) Giardia lamblia: ultrastructural study of the in vitro effects of benzimidazoles. J Protozool 39:510–515

    PubMed  Google Scholar 

  • Corrêa MP (1984) Dicionário das Plantas Úteis do Brasil. Imprensa Nacional: 399–400

    Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  Google Scholar 

  • Eckmann L (2003) Mucosal defences against Giardia. Parasite Immunol 25:259–270

    Article  PubMed  Google Scholar 

  • Elmendorf HG, Dawson SC, McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33:3–28

    Article  PubMed  Google Scholar 

  • Gardner TB, Hill DR (2001) Treatment of giardiasis. Clin Microbiol Rev 14:114–128

    Article  PubMed  Google Scholar 

  • Gillin FD, Reiner DS, McCaffery JM (1996) Cell biology of the primitive eukaryote Giardia lamblia. Annu Rev Microbiol 50:679–705

    Article  PubMed  Google Scholar 

  • Harris JC, Plummer S, Turner MP, Lloyd D (2000) The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiology 146:3119–3127

    PubMed  Google Scholar 

  • Hase K, Ohsugi M, Xiong Q, Basnet P, Kadota S, Namba T (1997) Hepatoprotective effects of Hovenia dulcis thunb. On experimental liver injuries induced by carbon tetrachloride or d-galactosamine/lipopolysaccharide. Biol Pharm Bull 20:381–385

    PubMed  Google Scholar 

  • Hussain RA, Lin Y, Poveda LJ, Bordas E, Chung BS, Pezzuto JM, Soerjato DD, Kinghorn D (1990) Plant-derived sweetening agents: saccharide and polyol constituents of some sweet-tasting plants. J Ethnopharmacol 28:103–115

    Article  PubMed  Google Scholar 

  • Katiyar SK, Gordon VR, McLaughlin LG, Edlind TD (1994) Antiprotozoal activities of benzimidazoles and correlations with β-tubulin sequence. Antimicrob Agents Chemother 38:2086–2090

    PubMed  Google Scholar 

  • Keister DB (1983) Axenic cultivation of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488

    Article  PubMed  Google Scholar 

  • Khan IA, Avery MA, Burandt CL, Goins DK, Mikell JR, Nash TE, Azedegan A, Walker LA (2000) Antigiardial activity of isoflavones from Dalbergia frutenscens bark. J Nat Prod 63:1414–1416

    Article  PubMed  Google Scholar 

  • Krettli AU, Andrade-Neto VF, Brandão MG, Ferrari WM (2001) The search for new antimalarial drugs from plants used to treat fever and malaria or plants randomly selected: a review. Mem Inst Oswaldo Cruz 96:1033–1042

    PubMed  Google Scholar 

  • Lanfredi-Rangel A, Attias M, Carvalho TMU, Kattenbach WM, Souza W (1998) The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol 123:225–235

    Article  PubMed  Google Scholar 

  • Lemée V, Zaharia I, Nevez G, Rabodonirina M, Brasseur P, Ballet JJ, Favennec L (2000) Metronidazole and albendazole susceptibility of 11 clinical isolates of Giardia duodenalis from France. J Antimicrob Chemother 46:819–821

    Article  PubMed  Google Scholar 

  • Liu LX, Weller PF (1996) Antiparasitic drugs. N Engl J Med 334:1178–1184

    Article  PubMed  Google Scholar 

  • Lopez Nigro MM, Palermo AM, Mudry MD, Carballo MA (2003) Cytogenetic evaluation of two nitroimidazole derivates. Toxicol In Vitro 17:35–40

    Article  PubMed  Google Scholar 

  • MacDonald LM, Armson A, Thompson AR, Reynoldson JA (2004) Characterization of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Encephalitozoon intestinalis, and Cryptosporidium parvum. Mol Biochem Parasitol 138:89–96

    Article  PubMed  Google Scholar 

  • McAllister TA, Annett CB, Cockwill CL, Olso ME, Wang Y, Cheeke PR (2001) Studies on the use of Yucca shidigera to control giardiosis. Vet Parasitol 97:85–99

    Article  PubMed  Google Scholar 

  • Muelas-Serrano S, Nogal JJ, Martinez-Diaz RA, Escario J, Martinez-Fernandez AR, Gomez-Barrio A (2000) In vitro screening of American plant extracts on Trypanosoma cruzi and Trichomonas vaginalis. J Ethnopharmacol 71:101–107

    Article  PubMed  Google Scholar 

  • Ogihara Y, Chen Y, Kobayashi Y (1987) A new prosapogenin from Hovenia saponin D by mild alkaline degradation. Chem Pharm Bull 35:2574–2575

    Google Scholar 

  • Ortega Y, Adam R (1997) Giardia: overview and update. Clin Infect Dis 25:545–550

    PubMed  Google Scholar 

  • Schliwa M, Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90:222–235

    Article  PubMed  Google Scholar 

  • Sousa MC, Silva JP (1999) A new method for assessing metronidazole susceptibility of Giardia lamblia trophozoites. Antimicrob Agents Chemother 43:2939–2942

    PubMed  Google Scholar 

  • Suttisri R, Lee IS, Kinghorn AD (1995) Plant-derived triterpenoid sweetness inhibitors. J Ethnopharmacol 47:9–26

    Article  PubMed  Google Scholar 

  • Upcroft P, Upcroft JA (2001) Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev 14:150–164

    Article  PubMed  Google Scholar 

  • Yoshikawa M, Murakami T, Ueda T, Matsuda H, Yamahara J, Murakami N (1996) Bioactive saponines and glycosides IV. Four methil-migrated 16, 17-seco-dammarane triterpene glycosides from Chinese natural medicine, hoveniae semen seu fructus, the seeds and fruit of Hovenia dulcis Thunb.: absolute stereostructures and inhibitory activity on histamine release of hovenidulciosides A1, A2, B1 and B2. Chem Pharm Bull 44:1736–1743

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Sub-Reitoria de Pós-graduação e Pesquisa (SR-2). The authors would like to thank Dr. Helmut Tröster for text revision, Dr. Adriano Caldeira de Araújo for the help with statistical data and Jonas de Britto Filho for technical assistance. The experiments in the present paper comply with the current laws of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.H. Monteiro-Leal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadelha, A., Vidal, F., Castro, T. et al. Susceptibility of Giardia lamblia to Hovenia dulcis extracts. Parasitol Res 97, 399–407 (2005). https://doi.org/10.1007/s00436-005-1476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-1476-6

Keywords

Navigation