Skip to main content

Advertisement

Log in

Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The ocean covers more than 70% of earth surface and hosts most 300,000 described species of plants and animals to use, which have been virtually unexploited for the development of medicines. Marine plants are the good source of biologically active entities which exhibit therapeutic properties, when applied single or in combination of different plant extracts (polyherbal). Polyherbal preparations are always a complex mixture of different forms and thus different compounds, which might act as agonistic, synergistic, complementary, antagonistic or toxic way. The present study was initially carried out to test the antiplasmodial activity of 13 mangrove plants and eight seaweeds species distributed along the coast of south India. Of these, mangrove species Aegiceras corniculatum and the seaweed species Chaetomorpha antennina have shown maximum antiplasmodial activity. Hence, the present study was mooted out to increase the percentage of antiplasmodial activity when applied as polyherbal preparations. The effect of marine polyherbal preparations from the methanolic extracts of two marine plants A. corniculatum and C. antennina for their antiplasmodial activity was tested. It shows that the polyherbal extract showed 63.50 ± 0.408% suppression of parasitaemia against Plasmodium falciparum at 1.5 mg ml−1 concentration. In vivo test was carried out with rat animal model to find out the effectiveness of the polyherbal extracts in the live system, which reveals that polyherbal extracts have exhibited remarkable antiplasmodial activity (50.57 ± 0.465%) against Plasmodium berghei at 120 mg kg−1 bw. This study shows that combinations of mangrove plants and seaweeds extracts had a source of lead compounds for the development of new drugs for the treatment of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agoramoorthy G, Chen FA, Venkatesalu V, Kuo DH, Shea PC (2008) Evaluation of antioxidant polyphenols from selected mangrove plants of India. Asi J Chem 20(2):1311–1322

    CAS  Google Scholar 

  • Anand Ganesh E, Das S, Arun G, Balamurugan S, Ruban Raj R (2009) Heparin like compound from green alga Chaetomorpha antennina—as potential anticoagulant agent. Asi J Med Sci 1(3):114–116

    Google Scholar 

  • Azas N, Laurencin N, Delmas F, Di Giorgio C, Gasquet M, Laget M, Timon David P (2002) Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitol Res 88(2):165–171

    Article  CAS  PubMed  Google Scholar 

  • Balasooriya SJ, Sotheeswaran S, Balasubramanian S (1982) Economically useful plant of Sri Lanka. Part IV. Screening of Sri Lanka plants for tannins. J Nat Sci Counc 10:213–219

    CAS  Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wet Ecol Mana 10:421–452

    Article  CAS  Google Scholar 

  • Baqar Naqvi S, Khan A, Shaikh D, Rafi Shaikh M (1992) Nematicidal properties of selected marine algae from Karachi coast. J Isla Aca Sci 5(3):171–172

    Google Scholar 

  • Chitra A (2001) Screening of bioactive compounds from mangroves and commercial antibiotics against urinary tract infectious bacterial pathogens. M.Sc. Dissertation, Manonmaniam Sundaranar University, India

  • Chung IM, Kim MY, Moon HI (2008) Antiplasmodial activity of sesquiterpene lactone from Carpesium rosulatum in mice. Parasitol Res 103:341–344

    Article  PubMed  Google Scholar 

  • Cowan MM (1999) Plants products as antimicrobial agents. Cli Microbiol Rev 12:564–582

    CAS  Google Scholar 

  • Crasta J (1997) Antimicrobial activity of some marine algae of southwest coast of India. Ind J Mar Sci 26:201–205

    Google Scholar 

  • Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of SOD using nitrite formation by superoxide radicals. Ind J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  • Gansane A, Sanon S, Ouattara LP, Traore A, Hutter S, Ollivier E, Azas N, Traore AS, Guissou IP, Sirima SB, Nebie I (2010) Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: contribution for their preservation. Parasitol Res 106:335–340

    Article  PubMed  Google Scholar 

  • Grossman SH, Mollo E, Ertingshausen G (1976) Simplified, totally enzymatic method for determination of serum triglycerides with a centrifugal analyzer. Clin Chem 22:1310–1313

    CAS  PubMed  Google Scholar 

  • Hirazumi A, Furusawa E (1999) An immunomodulatory polysaccharide rich substance from the fruit juice of Morinda citrifolio (noni) with antitumour activity. Phytother Res 13:380–387

    Article  CAS  PubMed  Google Scholar 

  • Jongsuvat Y (1981) Investigation of anticancer from Acanthus ilicifolius. M.Sc. Dissertation, Chulalongkorn University, Thailand

  • Jothibai Margret R, Kumaresan S, Ravikumar S (2009) A preliminary study on the anti-inflammatory activity of methanol extract of Ulva lactuca in rat. J Env Biol 30(5):899–902

    Google Scholar 

  • Kathiresan K, Ravindran VS, Muruganantham A (2006) Mangrove extracts prevent the blood coagulate. Ind J Biotechnol 5:252–254

    Google Scholar 

  • Kepam W (1986) Qualitative organic analysis (spectrochemical techniques), IIth edn. McGraw Hill, London, pp 40–58

    Google Scholar 

  • Kind J (1967a) The hydrolases—acid and alkaline phosphatase. In: Van D (ed) Practical clinical enzymology. Norstand Company Limited, London, p 191

    Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochem 27:969–978

    Article  CAS  Google Scholar 

  • Lee SJ, Park WH, Moon HI (2009) Bioassay-guided isolation of antiplasmodial anacardic acids derivatives from the whole plants of Viola websteri Hemsl. Parasitol Res 104:463–466

    Article  PubMed  Google Scholar 

  • Lowry OH, Rostbrugh NJ, Fan AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Malloy HT, Evelyn KA (1937) The determination of bilirubin with the photoelectric colorimeter. J Biol Chem 119:481–490

    CAS  Google Scholar 

  • Manilal A, Sujith S, Seghal Kiran G, Selvin J, Shakir C, Gandhimathi R, Nataraja Panikkar MV (2009) Biopotentials of seaweeds collected from southwest coast of India. J Mar Sci Technolo 17(1):67–73

    Google Scholar 

  • Masuda T, Yonemori S, Oyama Y, Takeda Y, Tanaka T, Andoh T, Shinohara A, Nakata M (1999) Evaluation of the antioxidant activity of environmental plants: activity of the leaf extracts from seashore plants. J Agric Food Chem 47:1749–1754

    Article  CAS  PubMed  Google Scholar 

  • Minjuan X, Zhiwei D, Min L, Jun L, Hongzheng F, Peter P, Wenhan L (2004) Chemical constituents from the mangrove plant, Aegiceras corniculatum. J Nat Prod 67(5):762–766

    Article  Google Scholar 

  • Moon HI (2007) Antiplasmodial activity of ineupatorolides A from Carpesium rosulatum. Parasitol Res 100:1147–1149

    Article  PubMed  Google Scholar 

  • Moore GE, Gerner RE, Frankin HA (1967) Cultures of normal human leukocytes. J Am Med Asso 199:519–524

    Article  CAS  Google Scholar 

  • Murakami A, Ohigashi H, Koshimizu K (1994) Possible anti-tumor promoting properties of traditional Thai foods and some of their active constituents. A Pac J Cli Nut 3:185–191

    Google Scholar 

  • Muthuraja M (2009) Effect of antibacterial bioactive compounds from Exoecaria agallocha for the management of fish and poultry diseases. M.Sc. Dissertation, Alagappa University, India

  • Naqvi SW, Solimabi A, Kamat SY, Fernandes L, Reddy CVG, Bhakuni DS, Dhawan BN (1981) Screening of some marine plants from the Indian coast for biological activity. Bot Mar 24:51–55

    Article  Google Scholar 

  • Nazar S, Ravikumar S, Prakash Williams G, Syed Ali M, Suganthi P (2009) Screening of Indian coastal plant extracts for larvicidal activity of Culex quinquefasciatus. Ind J Sci Technol 2(3):24–27

    Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Otoguro K, Ishiyama A, Kobayashi M, Sekiguchi H, Izuhara T, Sunazuka T, Tomoda H, Yamada H, Omura S (2004) In vitro and in vivo antimalarial activities of a carbohydrate antibiotic, prumycin against drug resistant strains of Plasmodia. J Antibio 57(6):400–402

    CAS  Google Scholar 

  • Padmakumar K, Ayyakkannu K (1997) Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from southern coast of India. Bot Mar 40:507–515

    Article  Google Scholar 

  • Padmini Sreenivasa Rao P, Sreenivasa Rao P, Karmarkar SM (1986a) Antibacterial substances from brown algae II. Efficiency of solvents in the evaluation of antibacterial substances from Sargassum johnstonii setchellet Gardnar. Bot Mar 29:503–507

    Article  Google Scholar 

  • Padmini Sreenivasa Rao P, Sreenivasa Rao P, Karmarkar SM (1986b) Biological investigation on genus Sargassum 3. Antifungal activity of crude extract of different species of Indian Sargassum (Phaeophyceae). Seaweed Res Util 9(1–2):25–29

    Google Scholar 

  • Peters W, Portus JH, Robinson BL (1975) The chemotherapy of rodent malaria XXII: the value of drug resistant strains of P. berghei in screening for blood Schizontocidal activity. Ann Trop Med Parasitol 69:155–171

    CAS  PubMed  Google Scholar 

  • Prakash S (2001) Screening of bioactive compounds from mangroves and commercial antibiotics against nosocomial post operative infectious pathogens. M.Sc. Dissertation, Manonmaniam Sundaranar University, India

  • Prakash S (2004) In vitro studies on male antifertility compounds from seaweed marine halophytes. M.Sc. Dissertation, Manonmaniam Sundaranar University, India

  • Premanathan M, Chandra K, Bajpai SK, Kathiresan K (1992) A survey of some Indian marine plants for antiviral activity. Bot Mar 35:321–324

    Article  Google Scholar 

  • Premanathan M, Kathiresan K, Chandra K, Bajpai SK (1993) Antiviral activity of marine plants against New castle disease virus. Trop Biomed 10:31–33

    Google Scholar 

  • Premanathan M, Kathiresan K, Nakashima H (1999) Mangrove halophytes: a source of antiviral substances. South Paci Stud 19(1–2):49–57

    Google Scholar 

  • Premanathan M, Nakashima H, Kathiresan K, Rajendran N, Yamamoto N (1996) In vitro anti-human immunodeficiency virus activity of mangrove plants. Ind J Med Res 103:278–281

    CAS  Google Scholar 

  • Rahman MF, Siddiqui MK, Jamil K (2001) Effects of Vepacide (Azadirachta indica) on aspartate and alanine aminotransferase profiles in a sub chronic study with rats. J Hum Experi Toxicol 20:243–249

    Article  CAS  Google Scholar 

  • Raja M (2009) Isolation and chemical characterization of bioactive compounds from chosen mangrove plants and their antimicrobial potential against some bacterial pathogens. Ph.D. Dissertation, Alagappa University, India

  • Ramanathan G, Raju M (2000) Screening of mangrove plant extracts against silkworm pathogens. M.Sc. Dissertation, Thiagarajar College, Madurai Kamaraj University, India

  • Ramazani A, Sardari S, Zakeri S, Vaziri B (2010) In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol Res. doi:10.1007/s00436-010-1900-4

    PubMed  Google Scholar 

  • Rao PS, Shelat YA (1982) Antifungal activity of different fractions of extracts from seaweeds. In: Hoppe HA, Levring T, Tanaka X (eds) Marine algae in pharmaceutical sciences, 2. Walter de Grugter, Berlin, pp 93–98

    Google Scholar 

  • Ravikumar S, Anburajan L, Ramanathan G, Kaliaperumal N (2002) Screening of seaweed extracts against antibiotic resistant post operative infectious pathogens. Seaweed Res Utli Assoc 24(1):95–99

    Google Scholar 

  • Ravikumar S, Ramanathan G, Subhakaran M, Jacob Inbaneson S (2009) Antimicrobial compounds from marine halophytes for silkworm disease treatment. Int J Med Med Sci 1(5):184–191

    Google Scholar 

  • Ravikumar S, Gnanadesigan M, Suganthi P, Ramalakshmi (2010a) Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int J Med Med Sci 2(3):94–99

    Google Scholar 

  • Ravikumar S, Gnanadesigan M, Sesh Serebiah J, Jacob Inbaneson S (2010b) Hepatoprotective effect of an Indian salt marsh herb Suaeda monoica Forsk. Ex. Gmel against concanavalin-A induced toxicity in rats. Life Sci Med Res 2010: LSMR-2

  • Ravikumar S, Thajuddin N, Suganthi P, Jacob Inbaneson S, Vinodkumar T (2010c) Bioactive potential of seagrass bacteria against human bacterial pathogens. J Env Bio 31:387–389

    CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A Colorimetric method for determination of serum glutamate oxaloacetate and pyruvate transaminases. Am J Clin Path 28:56–63

    CAS  PubMed  Google Scholar 

  • Rollet B (1981) Bibliography on mangrove research 1600–1975, UNESCO Paris. Pub. Information Retrieval Ltd., London, p 479

    Google Scholar 

  • Rotruck JT, Pope AL, Ganther HF, Swanson AB, Hafeman DG, Heksta WG (1973) Selenui biochemical role as a component of glutathione peroxidase. Sci 179:585–595

    Article  Google Scholar 

  • Sanon S, Azas N, Gasquet M, Ollivier E, Mahiou V, Barro N, Cuzin Ouattara N, Traore AS, Esposito BG, Timon David P (2003) Antiplasmodial activity of alkaloid extracts from Pavetta crassipes (K. Schum) and Acanthospermum hispidum (DC), two plants used in traditional medicine in Burkina Faso. Parasitol Res 90:314–317

    Article  CAS  PubMed  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochem 30:3875–3883

    Article  CAS  Google Scholar 

  • Shehnaz L (2003) Comparative phycochemical investigations on a variety of marine algae from Karachi coast. Ph.D. Dissertation, University of Karachi, Pakistan

  • Sherman PW, Billing J (1999) Darwinian gastronomy: why we use spices. Biosci 49:453–463

    Article  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  • Sivaperumal P (2009) Antibacterial sensitivity of active compounds from Exoecaria agallocha against antibiotic resistant human bacterial pathogens. M.Sc. Dissertation, Alagappa University, India

  • Sofowara A (1982) Medicinal plants and traditional medicine in Africa. John Wiley and Sons, New York, p 251

    Google Scholar 

  • Son IH, Chung IM, Lee SJ, Moon HI (2007) Antiplasmodial activity of novel stilbene derivatives isolated from Parthenocissus tricuspidata from South Korea. Parasitol Res 101:237–241

    Article  PubMed  Google Scholar 

  • Suresh Kumar S, Christopher John JA, Ravikumar S (2002) Antimicrobial activity of acetone extracts of seaweeds against human pathogens. Seaweed Res Util 24(1):111–115

    Google Scholar 

  • Trager W (1987) The cultivation of Plasmodium falciparum: applications in basic and applied research in malaria. Ann Trop Med Parasitol 82:511–529

    Google Scholar 

  • Varley H (ed) (1976) Practical clinical biochem, 4th edn. William Heinmann Publishers Pvt. Ltd., New York, p 452

    Google Scholar 

  • Vidhyavathi N, Sridhar KR (1991) Seasonal and geographical variations in the antimicrobial activity of seaweeds from the Mangalore coast in India. Bot Mar 34:279–284

    Article  Google Scholar 

  • Warnick GR, Bendeson J, Albers JJ (1982) Dextran sulfate Mg2+ precipitation procedure for quantitation of high-density lipoprotein cholesterol. Clin Chem 28(6):1379–1388

    CAS  PubMed  Google Scholar 

  • WHO (2003) Traditional medicine. World Health Organization (eds), Geneva, pp 1–334

    Google Scholar 

  • WHO (2008) World malaria report. World Health Organization, Geneva, Switzerland. http://rbm.who.int/wmr.2008. Accessed 18 Sept 2008

  • Winstanley PA (2000) Chemotherapy for falciparum malaria: the armoury, the problems and the prospects. Parasitol Tod 16:146–153

    Article  CAS  Google Scholar 

  • Zak B (1977) Cholesterol methodologies: a review. Clin Chem 23:1201

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the authorities of the Alagappa University for providing required facilities and also to the Indian Council of Medical Research, New Delhi for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, S., Ramanathan, G., Jacob Inbaneson, S. et al. Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum . Parasitol Res 108, 107–113 (2011). https://doi.org/10.1007/s00436-010-2041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2041-5

Keywords

Navigation