Skip to main content
Log in

Zoonotic linkage and variation in Cryptosporidium parvum from patients in the United Kingdom

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Relationships between patient exposure risks and variation within the Cryptosporidium parvum 60 kDa glycoprotein (GP60) gene were explored in samples isolated from human cases of cryptosporidiosis (n = 69) in England and Wales. GP60 family IIa predominated (n = 56), followed by IId (n = 9). One case was IIc, a newly named genotype IIcA5G3j, and isolates from three cases did not amplify with the GP60 primers. Cases with GP60 family IIa were more likely than IId to have visited a farm, or had contact with farm animals or with their faeces in the 2 weeks prior to illness. Within GP60 family IIa, genotypes IIaA15G2R1 and IIaA17G1R1 predominated (22 cases each); nine other IIa genotypes accounted for 12 cases. The IId genotypes were mainly IIdA17G1 and IIdA18G1 (3 each). Cases with IIaA17G1R1 were particularly linked to zoonotic exposures: visiting a farm or having farm animal contact in the 2 weeks prior to illness. These findings provide further evidence of zoonotic pathways for the transmission of C. parvum isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alves M, Xiao L, Sulaiman I, Lal AA, Matos O, Antunes F (2003) Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol 41:2744–2747

    Article  PubMed  CAS  Google Scholar 

  • Brook EJ, Hart AC, French NP, Christley RM (2009) Molecular epidemiology of Cryptosporidium subtypes in cattle in England. Vet J 179:378–382

    Article  PubMed  CAS  Google Scholar 

  • Chalmers RM, Giles M (2010) Zoonotic cryptosporidiosis. J Appl Microbiol 109:1487–1497

    Article  PubMed  CAS  Google Scholar 

  • Chalmers RM, Ferguson C, Cacciò SM, Gasser RB, El-Osta YGA, Heijnen L, Xiao L, Elwin K, Hadfield S, Sinclair M, Stevens M (2005) Direct comparison of selected methods for genetic categorisation of Cryptosporidium parvum and Cryptosporidium hominis species. Int J Parasitol 35:397–410

    Article  PubMed  CAS  Google Scholar 

  • Chalmers RM, Smith R, Elwin K, Clifton-Hadley FA, Giles M (2010) Epidemiology of anthroponotic and zoonotic human cryptosporidiosis in England and Wales, 2004–2006. Epidemiol Infect. doi:10.1017/S0950268810001688

    PubMed  Google Scholar 

  • Dyachenko V, Kuhnert Y, Schmaeschke R, Etzold M, Pantchev N, Daugschies A (2010) Occurrence and molecular characterization of Cryptosporidium spp. genotypes in European hedgehogs (Erinaceus europaeus L.) in Germany. Parasitology 137:205–216

    Article  PubMed  CAS  Google Scholar 

  • Goh S, Reacher M, Casemore DP, Verlander NQ, Chalmers RM, Knowles M, Williams J, Richards S (2004) Risk factors for sporadic cryptosporidiosis in North Cumbria, North West of England 1996 to 2000. Emerg Infect Dis 9:1005–1017

    Google Scholar 

  • Hunter PR, Hughes LS, Woodhouse S, Syed Q, Verlander N, Chalmers RM, Members of the project steering committee (2004) Sporadic cryptosporidiosis case-control study with genotyping. Emerg Infect Dis 10:1241–1249

    PubMed  Google Scholar 

  • Hunter PR, Hadfield SJ, Wilkinson D, Lake IR, Harrison FCD, Chalmers RM (2007) Subtypes of Cryptosporidium parvum in humans and disease risk. Emerg Infect Dis 13:82–88

    Article  PubMed  CAS  Google Scholar 

  • Lake IR, Harrison FCD, Chalmers RM, Bentham G, Nichols G, Hunter PR, Kovats RS, Grundy C (2007) Case-control study of environmental and social factors influencing cryptosporidiosis. Eur J Epidemiol 22:805–811

    Article  PubMed  Google Scholar 

  • Mallon M, MacLeod A, Wastling J, Smith H, Reilly B, Tait A (2003) Population structures and the role of genetic exchange in the zoonotic pathogen Cryptosporidium parvum. J Mol Evol 56:407–417

    Article  PubMed  CAS  Google Scholar 

  • Pollock KGJ, Tennent HE, Mellor DJ, Chalmers RM, Smith HV, Ramsay CN, Innocent GT (2009) Spatial and temporal epidemiology of sporadic human cryptosporidiosis in Scotland. Zoonoses Public Health 57:487–492. doi:10.1111/j.1863-2378.2009.01247

    Article  Google Scholar 

  • Smith RP, Chalmers RM, Mueller-Doblies D, Clifton-Hadley FA, Elwin K, Watkins J, Paiba GA, Hadfield SJ, Giles M (2010) Investigation of farms linked to human patients with cryptosporidiosis in England and Wales. Prev Vet Med 94:9–17

    Article  PubMed  CAS  Google Scholar 

  • Strong WB, Gut J, Nelson RG (2000) Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infect Immun 68:4117–4134

    Article  PubMed  CAS  Google Scholar 

  • Sulaiman IM, Hira PR, Zhou L, Al-Ali FM, Al-Shelahi FA, Shweiki HM et al (2005) Unique endemicity of cryptosporidiosis in children in Kuwait. J Clin Microbiol 43:2805–2809

    Article  PubMed  Google Scholar 

  • Thompson HP, Dooley JS, Kenny J, McCoy M, Lowery CJ, Moore JE, Xiao L (2007) Genotypes and subtypes of Cryptosporidium spp. in neonatal calves in Northern Ireland. Parasitol Res 100:619–624

    Article  PubMed  Google Scholar 

  • Widmer G (2009) Meta-analysis of a polymorphic surface glycoprotein of the parasitic protozoa Cryptosporidium parvum and Cryptosporidium hominis. Epidemiol Infect 137(12):1800–1808. doi:10.1017/S0950268809990215

    Article  PubMed  CAS  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Feng Y (2008) Zoonotic cryptosporidiosis. FEMS Immunol Med Microbiol 52:309–323

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Singh A, Jiang J, Xiao L (2003) Molecular surveillance of Cryptosporidium spp. in raw wastewater in Milwaukee: implications for understanding outbreak occurrence and transmission dynamics. J Clin Microbiol 41:5254–5257

    Article  PubMed  CAS  Google Scholar 

  • Zintl A, Proctor AF, Read C, Dewaal T, Shanaghy N, Fanning S, Mulcahy G (2008) The prevalence of Cryptosporidium species and subtypes in human faecal samples in Ireland. Epidemiol Infect 137:270–277

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Local Authorities for administering and returning the enhanced surveillance questionnaires, and the diagnostic laboratories for sending Cryptosporidium-positive stools for typing. This research project was funded by the Department for Environment, Food and Rural Affairs (DEFRA) under project OZ0407. The views expressed here are those of the authors and not necessarily those of DEFRA.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel M. Chalmers.

Additional information

Declaration

The experiments reported here comply with the current laws of England and Wales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalmers, R.M., Smith, R.P., Hadfield, S.J. et al. Zoonotic linkage and variation in Cryptosporidium parvum from patients in the United Kingdom. Parasitol Res 108, 1321–1325 (2011). https://doi.org/10.1007/s00436-010-2199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2199-x

Keywords

Navigation