Skip to main content

Advertisement

Log in

Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Malaria, the most widespread mosquito-borne disease, affects 350–500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41 %, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarthi N, Murugan K (2010) Larvicidal and smoke repellent activities of Spathodea campanulata P. Beauv. against the malarial vector Anopheles stephensi lis (Diptera: Culicidae). J Phytol 2:61–69

    Google Scholar 

  • Abbassy MA, Marzouk MA, Rabea EI, Abd-Elnabi AD (2014) Insecticidal and fungicidal activity of Ulva lactuca Linnaeus (Chlorophyta) extracts and their fractions. Ann Res Rev Biol 4:2252–2262

    Article  Google Scholar 

  • Abirami D, Murugan K (2011) HPTLC quantification of flavonoids, larvicidal and smoke repellent activities of Cassia occidentalis L. (Caesalpiniaceae) against malarial vectore Anopheles stephensi Lis (Diptera: Culicidae). J Phytol 3:60–72

    Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006c) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006d) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499

    Article  PubMed  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Mico-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi:10.1007/s10340-015-0675-x

    Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Born Zoon Dis 12:262–268

    Article  Google Scholar 

  • Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Hader D-P (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326

    Article  PubMed  Google Scholar 

  • Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108:15–22

    Article  PubMed  Google Scholar 

  • Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res. doi:10.1007/s00436-015-4586-9

    Google Scholar 

  • Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res. doi:10.1007/s00436-015-4656-z

  • Benelli G (2015c) Plant-synthesized nanoparticles in the fight against mosquito vectors: an eco-friendly tool against mosquito vectors? In: “Nanoparticles in the fight against parasites” (Ed. Heinz Mehlhorn), Parasitology Research Monographs, Springer, ISSN: 2192-3671, in press

  • Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013a) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161

    Article  PubMed  Google Scholar 

  • Benelli G, Canale A, Conti B (2013b) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacologyonline 47:44–51

    Google Scholar 

  • Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–36

    Article  PubMed  Google Scholar 

  • Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res 114:1011–21

    Article  PubMed  Google Scholar 

  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114(2):391–7

    Article  PubMed  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles—a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493

    CAS  Google Scholar 

  • Borchert H, Shevchenko EV, Robert A, Meki I, Kornowski A, Grubel G, Weller H (2005) Langmuir 21:1936

    Article  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    Article  PubMed  Google Scholar 

  • Elliot M, Janesn NF, Potter C (1978) The future of pyrethroids in insect control. Annu Rev Entomol 23:443–469

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit Analysis. Cambridge University, London, pp 68–78

    Google Scholar 

  • Flodin C, Helidoniotis FFB (1999) Whitfield. Phytochmistry 51:135

    Article  CAS  Google Scholar 

  • Frederich M, Dogné JM, Angenot L, De Mol P (2002) New trends in anti-malarial agents. Curr Med Chem 9:1435–1456

    Article  CAS  PubMed  Google Scholar 

  • Gessler MC, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner M (1994) Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop 56:65–77

    Article  CAS  PubMed  Google Scholar 

  • Ivanova VR, Rouseva M, Kolarove Serkedjieva J, Manolova N (1994) Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Prep Biochem Biotechnol 24:83–97

    CAS  Google Scholar 

  • Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627

    Article  PubMed  Google Scholar 

  • Kalimuthu K, Lin SM, Tseng LC, Murugan K, Hwang J-S (2014) Bioefficacy potential of seaweed Gracilaria firma with copepod, Megacyclops formosanus for the control larvae of dengue vector Aedes aegypti. Hydrobiologia 741:113–123

    Article  CAS  Google Scholar 

  • Kamaraj C, Kaushik NK, Rahuman AA, Mohanakrishnan D, Bagavan A, Elango G, Zahir AA, Santhoshkumar T, Marimuthu S, Jayaseelan C, Kirthi AV, Rajakumar G, Velayutham K, Sahal D (2012) Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. J Ethnopharmacol 141:796–802

    Article  PubMed  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 79:594–598

    Article  CAS  PubMed  Google Scholar 

  • Khanavi M, Toulabi PB, Abai MR, Sadati N, Hadjiakhoondi F, Hadjiakhoondi A, Vatandoost H (2011) Larvicidal activity of marine algae, Sargassum swartzii and Chondria dasyphylla, against malaria vector Anopheles stephensi. J Vector Borne Dis 48:241–244

    PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012) Studies on larvicidal and pupicidal activity of Leucas aspera Willd (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  PubMed  Google Scholar 

  • Kumar KP, Murugan K, Kovendan K, Kumar AN, Hwang JS, Barnard DR (2012) Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito, Anopheles sundaicus, in Tamil Nadu, India. Sci Asia 38:141–146

    Article  Google Scholar 

  • Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (2013) Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf B Biointerfaces 103:658–661

    Article  CAS  PubMed  Google Scholar 

  • Magudapatty P, Gangopadhyayrans P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoparticles embedded in glass matrix. Physica B 299:142–146

    Article  Google Scholar 

  • Mehlhorn H (ed) (2011) Nature helps. How plants and other organisms contribute to solve health problems. Parasitol Res Monographs. Springer, Berlin, pp 1–372

    Google Scholar 

  • Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

    Article  PubMed  Google Scholar 

  • Mishra A, Kaushik NV, Sardar M, Sahal D (2013) Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B Biointerfaces 111:713–718

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Khatak J, Thyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology 19(7):075103

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti Insecta: Diptera: Culicidae). Bioresour Technol 98:198–20

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114(6):2243–53

    Article  PubMed  Google Scholar 

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. doi:10.1007/s00436-015-4582-0

    Google Scholar 

  • Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res. doi:10.1007/s11356-015-4920-x

    Google Scholar 

  • Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Mahesh Kumar P, Amerasan D, Paulpandi M, Chandirasekar R, Dinesh D, Suresh U, Subramaniam J, Higuchi A, Alarfaj AA, Nicoletti M, Mehlhorn H, Benelli G (2015e) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol Res. doi:10.1007/s00436-015-4593-x

    Google Scholar 

  • Ouattara LP, Sanon S, Mahiou-Leddet V, Gansané A, Baghdikian B, Traoré A, Nébié I, Traoré AS, Azas N, Ollivier E, Sirima SB (2014) In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitol Res 113:405–416

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109

    Article  CAS  PubMed  Google Scholar 

  • Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167:776–790

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA, Chung IM, Vishnu Kirthi A, Marimuthu S, Anbarasan K (2015) Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res 114:1397–1406

    Article  PubMed  Google Scholar 

  • Ravikumar S, Ramanathan G, Inbaneson SJ, Ramu A (2011) Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum. Parasitol Res 108:107–113

    Article  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990

    Article  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2015.07.005

  • Rouxel C, Bonnabeze E, Daniel A, Jerome M, Etienne M, Fleurence J (2001) Identification by SDS PAGE of green seaweeds (Ulva and Enteromorpha) used in the food industry. J Appl Phycol 13:215–218

    Article  CAS  Google Scholar 

  • Santoso J, Yumiko Y, Takeshi S (2004) Antioxidant activity of methanol extracts from Indonesian seaweeds in an oil emulsion model. Fish Sci 70:183–188

    Article  CAS  Google Scholar 

  • Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6

    Article  Google Scholar 

  • Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2009) Nature helps: from research to products against blood sucking arthropods. Parasitol Res 105:1483–1487

    Article  PubMed  Google Scholar 

  • Shameli K, Ahmad MB, Yunus WMZW, Ibrahim NA (2010) Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. Int J Nanomedicine 5:743–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharbidre AA, Kasote DM (2013) Synthesis of silver nanoparticles using flaxseed hydroalcoholic extract and its antimicrobial activity. Curr Biotechnol 2:162–166

    Article  CAS  Google Scholar 

  • Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song JY, Janga HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138

    Article  CAS  Google Scholar 

  • Stuart BH (2002) Polymer Analysis. Wiley, United Kingdom

    Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi:10.1007/s00436-015-4556-2

    PubMed  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Thangam TS, Kathiresan K (1991) Mosquito larvicidal effect of seaweed extracts. Bot Mar 34:433–435

    Google Scholar 

  • Trager W, Jensen J (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  CAS  PubMed  Google Scholar 

  • WHO (2005) Guidelines for laboratory and field-testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13. http://whqlibdoc.who.int/hq/2005/WHO_CDS_WHOPES_GCDPP_2005.13.pdf?ua=1

  • WHO (2014) Malaria. Fact sheet no. 94

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology (New Delhi, India), Project No. DST/SB/EMEQ-335/2013. This work was also supported by the King Saud University, Deanship of Scientific Research, and College of Sciences Research Center. Funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflicts of interest

The authors declare that they have no competing interests. Heinz Mehlhorn and Giovanni Benelli are Editor in Chief and Editorial Board Member of Parasitology Research, respectively. This does not alter the authors’ adherence to all the Parasitology Research policies on sharing data and materials.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, K., Samidoss, C.M., Panneerselvam, C. et al. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?. Parasitol Res 114, 4087–4097 (2015). https://doi.org/10.1007/s00436-015-4638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4638-1

Keywords

Navigation