Skip to main content
Log in

Confirmation of linkage to chromosome 1q for spine bone mineral density in southern Chinese

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Chromosome 1q has previously been linked to bone mineral density (BMD) variation in the general population in several genome-wide linkage studies in both humans and mouse model. The aim of present study is to replicate and fine map the QTL influencing BMD in chromosome 1q in southern Chinese. Twelve microsatellite markers were genotyped for a 57 cΜ region in the chromosome 1q in 306 southern Chinese families with 1,459 subjects. Each of these families was ascertained through a proband with BMD Z-scores less than −1.3 at the hip or spine. BMD (g/cm2) at the L1-4 lumbar spine, femoral neck (FN), trochanter and total hip was measured by dual-energy X-ray absortiometry. Linkage analyses were performed using the variance component linkage analysis method implemented in Merlin software. Four markers (D1S2878, D1S196, D1S452, and D1S218) achieved a LOD score greater than 1.0 with spine BMD, with the maximum multipoint LOD score of 2.36 at the marker D1S196. We did not detect a LOD score greater than 1.0 for BMD at the FN, trochanter, or total hip in multipoint linkage analyses. Our results present the first evidence for the presence of an osteoporosis susceptibility gene on chromosome 1q in non-Caucasian subjects. Further analyses of candidate genes are warranted to identify QTL genes and variants underlying the variations of BMD in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin—rapid analysis of dense genetic map using sparse gene flow trees. Nat Genet 30:97-101

    Article  PubMed  CAS  Google Scholar 

  • Beamer WG, Shultz KL, Churchill GA, Frankel WN, Baylink DJ, Rosen CJ, Donahue LR (1999) Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mamm Genome 10:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Beamer WG, Shultz KL, Donahue LR, Churchill GA, Sen S, Wergedal JR, Baylink DJ, Rosen CJ (2001) Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 16:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Cooper C, Compion G, Melton LJ (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289

    Article  PubMed  CAS  Google Scholar 

  • Deng HW, Xu FH, Huang QY, Shen H, Deng HY, Conway T, Liu YJ, Liu YZ, Li JL, Zhang HT, Davies KM, Recker RR (2002) A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for Osteoporosis. J Clin Endocrinol Metab 87:5151–5159

    Article  PubMed  CAS  Google Scholar 

  • Devoto M, Spotila LD, Stabley DL, Wharton GN, Rydbeck H, Korkko J, Kosich R, Prockop D, Tenenhouse A, Sol-Church K (2005) Univariate and bivariate variance component linkage analysis of a whole-genome scan for loci contributing to bone mineral density. Eur J Hum Genet 13:781–788

    Article  PubMed  CAS  Google Scholar 

  • Econs MJ, Koller DL, Hui SL, Fishburn T, Conneally PM, Johnston CC, Peacock M, Foroud T (2004) Confirmation of linkage to chromosome 1q for peak vertebral bone mineral density in premenopausal white women. Am J Hum Genet 74:223–228

    Article  PubMed  CAS  Google Scholar 

  • Edderkaoui B, Baylink DJ, Beamer WG, Wergedal JE, Dunn NR, Shultz KL, Mohan S (2006) Multiple genetic loci from CAST/EiJ chromosome 1 affect vBMD either positively or negatively in a C57BL/6J background. J Bone Miner Res 21:97–104

    Article  PubMed  CAS  Google Scholar 

  • Huang QY, Cheng MR, Ji SL (2006) Linkage and association studies of the susceptibility genes for type 2 diabetes. Acta Genet Sin (in press)

  • Huang QY, Kung AWC (2006) Genetics of osteoporosis. Mol Genet Metab June 12 (Epud ahead of print)

  • International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  CAS  Google Scholar 

  • Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, Karassa FB, Langdahl B, van Meurs JB, Mosekilde L, Scollen S, Albagha OM, Bustamante M, Carey AH, Dunning AM, Enjuanes A, van Leeuwen JP, Mavilia C, Masi L, McGuigan FE, Nogues X, Pols HA, Reid DM, Schuit SC, Sherlock RE, Uitterlinden AG (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 292:2105–2114

    Article  PubMed  CAS  Google Scholar 

  • Ishimori N, Li R, Walsh KA, Korstanje R, Rollins JA, Petkov P, Pletcher MT, Wiltshire T, Donahue LR, Rosen CJ, Beamer WG, Churchill GA, Paigen B (2006) Quantitative trait loci that determine BMD in C57BL/6J and 129S1/SvImJ inbred mice. J Bone Miner Res 21:105–112

    Article  PubMed  Google Scholar 

  • Klein RF, Calos AS, Vartanian A, Chambers VK, Turner RJ, Phillips T, Belknap JK, Orwoll ES (2001) Confirmation and fine mapping of chromosomal regions influencing peak bone mass in mice. J Bone Miner Res 16:1953–1961

    Article  PubMed  CAS  Google Scholar 

  • Koller DL, Econs MJ, Morin PA, Christian JC, Hui SL, Parry P, Curran ME, Rodriguez LA, Conneally PM, Joslyn G, Peacock M, Johnston CC, Foroud T (2000) Genome scan for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 85:3116–3120

    Article  PubMed  CAS  Google Scholar 

  • Kung AWC (1997) The prevalence and risk factors of fractures in Hong Kong. In: SK Lam (ed) The Health of the Elderly in Hong Kong. Hong Kong University Press, Hong Kong, pp 161–171

  • Kung AWC, Yeung SCC, Lau KS (1998) Vitamin D receptor gene polymorphisms and peak bone mass in southern Chinese women. Bone 22:389–393

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpretating the reporting results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Rho YH, Choi SJ, Ji JD, Song GG (2006) Meta-analysis of genome-wide linkage studies for bone mineral density. J Hum Genet 51:480–486

    Article  PubMed  Google Scholar 

  • Masinde GL, Li X, Gu W, Wergedal J, Mohan S, Baylink DJ (2002) Quantitative trait loci for bone density in mice: the genes determining total skeletal density and femur density show little overlap in F2 mice. Calcif Tissue Int 71:421–428

    Article  PubMed  CAS  Google Scholar 

  • Pietschmann F, Breslau NA, Pak CY (1992) Reduced vertebral bone density in hypercalciuric nephrolithiasis. J Bone Miner Res 7:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Ralston SH, Galwey N, MacKay I, Albagha OME, Cardon L, Compston JE, Cooper C, Duncan E, Keen R, Langdahl B, McLellan A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass J, Bennett ST (2005) Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 14:943–951

    Article  PubMed  CAS  Google Scholar 

  • Ralston SH, Uitterlinden AG, Brandi ML, Balcells S, Langdahl BL, Lips P, Lorenc R, Obermayer-Pietsch B, Scollen S, Bustamante M, Husted LB, Carey AH, Diez-Perez A, Dunning AM, Falchetti A, Karczmarewicz E, Kruk M, Leeuwen JP, Meurs JB, Mangion J, McGuigan FE, Mellibovsky L, Monte FD, Pols HA, Reeve J, Reid DM, Renner W, Rivadeneira F, Schoor NM, Sherlock RE, Ioannidis JP (2006) Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med 3:e90

    Google Scholar 

  • Reed BY, Gitomer WL, Heller HJ, Hsu MC, Lemke M, Padalino P, Pak CY (2002) Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab 87:1476–1485

    Article  PubMed  CAS  Google Scholar 

  • Reed BY, Heller HJ, Gitomer WL, Pak CY (1999) Mapping a gene defect in absorptive hypercalciuria to chromosome 1q23.3-q24. J Clin Endocrinol Metab 84:3907–3913

    Article  PubMed  CAS  Google Scholar 

  • Reneland RH, Mah S, Kammere S, Hoyal CR, Marnellos G, Wilson SG, Sambrook PN, Spector TD, Nelson MR, Braun A (2005) Association between a variation in the phosphodiesterase 4D gene and bone mineral density. BMC Med Genet 6:9

    Article  PubMed  CAS  Google Scholar 

  • Sham PC, Purcell S, Cherny SS, Abecasis GR (2002) Powerful regression-based quantitative-trait linkage analysis of general pedigrees. Am J Hum Genet 71:238–53

    Article  PubMed  CAS  Google Scholar 

  • Shultz KL, Donahue LR, Bouxsein ML, Baylink DJ, Rosen CJ, Beamer WG (2003) Congenic strains of mice for verification and genetic decomposition of quantitative trait loci for femoral bone mineral density. J Bone Miner Res 8:175–85

    Article  Google Scholar 

  • Weiss LA, Pan L, Abney M, Ober C (2006) The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 38:218–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

QY Huang is supported by The KC Wong Education Foundation. The study is supported by the Bone Health Fund, Hong Kong University Foundation, Matching Grant and the Osteoporosis and Endocrine Research Fund, The University of Hong Kong. The authors thank the staff of the Osteoporosis Centre, KS Lau and Wilson Ng, The University of Hong Kong, Queen Mary Hospital, for their assistance in this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pak C. Sham or Annie W. C. Kung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, CL., Huang, QY., Ng, M.Y.M. et al. Confirmation of linkage to chromosome 1q for spine bone mineral density in southern Chinese. Hum Genet 120, 354–359 (2006). https://doi.org/10.1007/s00439-006-0220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0220-3

Keywords

Navigation