Skip to main content

Advertisement

Log in

A novel locus for maternally inherited human gingival fibromatosis at chromosome 11p15

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Human isolated gingival fibromatosis is an oral disorder characterized by a slowly progressive benign enlargement of gingival tissues. The most common genetic form, hereditary gingival fibromatosis (HGF), is usually transmitted as an autosomal dominant trait. We report here for the first time a newly identified maternally inherited gingival fibromatosis in two unrelated Chinese families and mapped this disease locus to human chromosome 11p15 with a maximum two point LOD score of 8.70 at D11S4046 (θ = 0) for family 1 and of 6.02 at D11S1318 for family 2. Haplotype analysis placed the critical region in the interval defined by D11S1984 and D11S1338. A cluster of maternally expressed genes is within this critical region. We screened individuals in these two families for mutations for all known maternally expressed genes within this region. None was found either within the coding sequence or at the intron–exon boundary of these genes. Neither did we detect any loss of imprinting in three informative imprinted genes including H19, KCNQ1 downstream neighbor (KCNQ1DN) and cyclin-dependent kinase inhibitor 1C (CDKN1C). However, gene expression profile analysis revealed reduced expression of hemoglobin beta (HBB), hemoglobin delta (HBD), hemoglobin gamma A (HBG1) and hemoglobin gamma G (HBG2) genes at disease locus in HGF patients. This study suggests that genome imprinting might affect the development of HGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HGF:

Hereditary gingival fibromatosis

DMR:

Differentially methylated region

H19DMR:

H19 differentially methylated region

References

  • Adriaenssens E, Dumont L, Lottin S, Bolle D, Lepretre A, Delobelle A, Bouali F, Dugimont T, Coll J, Curgy JJ (1998) H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol 153:1597–1607

    PubMed  CAS  Google Scholar 

  • Adriaenssens E, Lottin S, Berteaux N, Hornez L, Fauquette W, Fafeur V, Peyrat JP, Le Bourhis X, Hondermarck H, Coll J, Dugimont T, Curgy JJ (2002) Cross-talk between mesenchyme and epithelium increases H19 gene expression during scattering and morphogenesis of epithelial cells. Exp Cell Res 275:215–229

    Article  PubMed  CAS  Google Scholar 

  • Adriaenssens E, Lottin S, Dugimont T, Fauquette W, Coll J, Dupouy JP, Boilly B, Curgy JJ (1999) Steroid hormones mdulate H19 gene expression in both mammary gland and uterus. Oncogene 18:4460–4473

    Article  PubMed  CAS  Google Scholar 

  • Bakaeen G, Scully C (1991) Hereditary gingival fibromatosis in a family with the Zimmermann–Laband syndrome. J Oral Pathol Med 20:457–459

    Article  PubMed  CAS  Google Scholar 

  • Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW 3rd, Cornelisse CJ, Devilee P, Devlin B (2000) Mutations in SDHD, a mitochondrial complexII gene, in hereditary paraganglioma. Science 287:848–851

    Article  PubMed  CAS  Google Scholar 

  • Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485

    Article  PubMed  CAS  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291:447–450

    Article  PubMed  CAS  Google Scholar 

  • Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36

    PubMed  CAS  Google Scholar 

  • Cuestas-Carnero R, Bornancini CA (1988) Hereditary generalized gingival fibromatosis associated with hypertrichosis: report of five cases in one family. J Oral Maxillofac Surg 46:415–420

    Article  PubMed  CAS  Google Scholar 

  • Falls JG, Pulford DJ, Wylie AA, Jirtle RL (1999) Genomic imprinting: implications for human disease. Am J Pathol 154:635–647

    PubMed  CAS  Google Scholar 

  • Feinberg AP (1999) Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction. Cancer Res 59:1743–1746

    Google Scholar 

  • Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32:426–431

    Article  PubMed  CAS  Google Scholar 

  • Fryns JP (1996) Gingival fibromatosis and partial duplication of the short arm of chromosome 2 (dup(2) (p13– > p21)). Ann Genet 39:54–55

    PubMed  CAS  Google Scholar 

  • Hallett KB, Bankier A, Chow CW, Bateman J, Hall RK (1995) Gingival fibromatosis and Klippel–Trenaunay–Weber syndrome. Case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 79:578–582

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B (1993) Tumour-suppressor activity of H19 RNA. Nature 365:764–767

    Article  PubMed  CAS  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489

    Article  PubMed  CAS  Google Scholar 

  • Hart TC, Pallos D, Bowden DW, Bolyard J, Pettenati MJ, Cortelli JR (1998) Genetic linkage of hereditary gingival fibromatosis to chromosome 2p21. Am J Hum Genet 62:876–883

    Article  PubMed  CAS  Google Scholar 

  • Hart TC, Pallos D, Bozzo L, Almeida OP, Marazita ML, O’Connell JR, Cortelli JR (2000) Evidence of genetic heterogeneity for hereditary gingival fibromatosis. J Dent Res 79:1758–1764

    PubMed  CAS  Google Scholar 

  • Hart TC, Zhang Y, Gorry MC, Hart PS, Cooper M, Marazita ML, Marks JM, Cortelli JR, Pallos D (2002) A mutation in the SOS1 gene causes hereditary gingival fibromatosis type1. Am J Hum Genet 70:943–954

    Article  PubMed  CAS  Google Scholar 

  • Hassell TM, Hefti AF (1991) Drug-induced gingival overgrowth: old problem, new problem. Crit Rev Oral Biol Med 2:103–137

    PubMed  CAS  Google Scholar 

  • Henry I, Grandjouan S, Couillin P, Barichard F, Huerre-Jeanpierre C, Glaser T, Philip T, Lenoir G, Chaussain JL, Junien C (1989) Tumor-specific loss of 11p15.5 alleles in del11p13 wilms tumor and in familial adrenocortical carcinoma. Proc Natl Acad Sci USA 86:3247–3251

    Article  PubMed  CAS  Google Scholar 

  • Hensen EF, Jordanova ES, van Minderhout IJ, Hogendoorn PC, Taschner PE, van der Mey AG, Devilee P, Cornelisse CJ (2004) Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23:4076–4083

    Article  PubMed  CAS  Google Scholar 

  • Horike S, Mitsuya K, Meguro M, Kotobuki N, Kashiwagi A, Notsu T, Schulz TC, Shirayoshi Y, Oshimura M (2000) Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 9:2075–2083

    Article  PubMed  CAS  Google Scholar 

  • Jorgenson RJC, M.E. (1974) Variation in the inheritance and expression of gingival fibromatosis. J Periodontol 45:472–477

  • Karnik P, Paris M, Williams BR, Casey G, Crowe J, Chen P (1998) Two distinct tumor suppressor loci within chromosome 11p15 implicated in breast cancer progression and metastasis. Hum Mol Genet 7:895–903

    Article  PubMed  CAS  Google Scholar 

  • Kohda M, Hoshiya H, Katoh M, Tanaka I, Masuda R, Takemura T, Fujiwara M, Oshimura M (2001) Frequent loss of imprinting of IGF2 and MEST in lung adenocarcinoma. Mol Carcinog 31:184–191

    Article  PubMed  CAS  Google Scholar 

  • Koi M, Johnson LA, Kalikin LM, Little PF, Nakamura Y, Feinberg AP (1993) Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science 260:361–364

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T, Takahashi T (1995) Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10:1193–1198

    PubMed  CAS  Google Scholar 

  • Laband PF, Habib G, Humphreys GS (1964) Hereditary gingival fibromatosis. Report of an affected family with associated splenomegaly and skeletal and soft-tissue abnormalities. Oral Surg Oral Med Oral Pathol 17:339–351

    Article  PubMed  CAS  Google Scholar 

  • Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA 81:3443–3446

    Article  PubMed  CAS  Google Scholar 

  • Lottin S, Adriaenssens E, Berteaux N, Lepretre A, Vilain MO, Denhez E, Coll J, Dugimont T, Curgy JJ (2005) The human H19 gene is frequently overexpressed in myometrium and stroma during pathological endometrial proliferative events. Eur J Cancer 41:168–177

    Article  PubMed  CAS  Google Scholar 

  • Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, Dugimont T, Curgy JJ (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 23:1885–1895

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ (1995) CDKN1C, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9:650–662

    PubMed  CAS  Google Scholar 

  • Morey MA, Higgins RR (1990) Ectro-amelia syndrome associated with an interstitial deletion of 7q. Am J Med Genet 35:95–99

    Article  PubMed  CAS  Google Scholar 

  • Olek A, Walter J (1997) The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet 17:275–276

    Article  PubMed  CAS  Google Scholar 

  • Onda M, Akaishi J, Asaka S, Okamoto J, Miyamoto S, Mizutani K, Yoshida A, Ito K, Emi M (2005) Decreased expression of haemoglobin beta (HBB) gene in anaplastic thyroid cancer and recovery of its expression inhibits cell growth. Br J Cancer 92:2216–2224

    Article  PubMed  CAS  Google Scholar 

  • Raeste AM, Collan Y, Kilpinen E (1978) Hereditary fibrous hyperplasia of the gingiva with varying penetrance and expressivity. Scand J Dent Res 86:357–365

    PubMed  CAS  Google Scholar 

  • Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362:747–749

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  CAS  Google Scholar 

  • Rivera H, Ramirez-Duenas ML, Figuera LE, Gonzalez-Montes RM, Vasquez AI (1992) Opposite imbalances of distal 14q in two unrelated patients. Ann Genet 35:97–100

    PubMed  CAS  Google Scholar 

  • Sakatani T, Kaneda A, Iacobuzio-Donahue CA, Carter MG, de Boom Witzel S, Okano H, Ko MS, Ohlsson R, Longo DL, Feinberg AP (2005) Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307:1976–1978

    Article  PubMed  CAS  Google Scholar 

  • Singer SL, Goldblatt J, Hallam LA, Winters JC (1993) Hereditary gingival fibromatosis with a recessive mode of inheritance. Case reports. Aust Dent J 38:427–432

    Article  PubMed  CAS  Google Scholar 

  • Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, Smallwood AC, Joyce JA, Schofield PN, Reik W, Nicholls RD, Weksberg R, Driscoll DJ, Maher ER, Shows TB, Higgins MJ (1999) A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome. Proc Natl Acad Sci USA 96:8064–8069

    Article  PubMed  CAS  Google Scholar 

  • Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323–1337

    PubMed  CAS  Google Scholar 

  • Sujansky E, Smith AC, Prescott KE, Freehauf CL, Clericuzio C, Robinson A (1993) Natural history of the recombinant (eight) syndrome. Am J Med Genet 47:512–525

    Article  PubMed  CAS  Google Scholar 

  • Thorvaldsen JL, Duran KL, Bartolomei MS (1998) Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 12:3693–3702

    PubMed  CAS  Google Scholar 

  • Witkop CJ Jr (1971) Heterogeneity in gingival fibromatosis. Birth Defects Orig Artic Ser 7:210–221

    PubMed  Google Scholar 

  • Wrana JL (1994) H19, a tumour suppressing RNA? Bioessays 16:89–90

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Bu L, Zhu L, Zheng G, Yang M, Qian M, Hu L, Liu J, Zhao G, Kong X (2001) A new locus for hereditary gingival fibromatosis (GINGF2) maps to 5q13-q22. Genomics 74:180–185

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Wang X, Qu B, Yang M, Liu G, Bu L, Wang Y, Zhu L, Lei H, Hu L, Zhang X, Liu J, Zhao G, Kong X (2000) Refinement of the locus for autosomal dominant hereditary gingival fibromatosis (GINGF) to a 3.8-cM region on 2p21. Genomics 68:247–252

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Shi L, Cheng Y, Peng Q, Huang S, Liu J, Huang M, Peng B, Bian Z (2005) A novel locus for autosomal dominant hereditary gingival fibromatosis, GINGF3, maps to chromosome 2p22.3–p23.3. Clin Genet 68:239–244

    Article  PubMed  CAS  Google Scholar 

  • Yen FS, Podruch PE, Weisskopf B (1989) A terminal deletion (14)(q31.1) in a child with microcephaly, narrow palate, gingival hypertrophy, protuberant ears, and mild mental retardation. J Med Genet 26:130–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contributions of the HGF families who participated in this study and have made this resource possible. Many thanks to all those individuals giving support to our work. We thank Y. Jiang and A. Ward for critical reading of this manuscript. This work is supported by the National High Technology Research and Development Program of China (863 Program) (No. 2001AA221091), the National Science Fund for Distinguished Young Scholars (No. 30125028), the National Natural Science Foundation of China, General Program (No. 30270728), Chinese Academy of Sciences (kscx2-sw-206), Shanghai Municipal Commission for Science and Technology (03DJ14010), and the Chinese National Key Program for Basic research (2004CB518603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyin Kong or Landian Hu.

Additional information

Conflict Of Interest Statement: No competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Zhang, W., Huo, Z. et al. A novel locus for maternally inherited human gingival fibromatosis at chromosome 11p15. Hum Genet 121, 113–123 (2007). https://doi.org/10.1007/s00439-006-0283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0283-1

Keywords

Navigation