Skip to main content

Advertisement

Log in

Identifying modifier genes of monogenic disease: strategies and difficulties

  • Review article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Substantial clinical variability is observed in many Mendelian diseases, so that patients with the same mutation may develop a very severe form of disease, a mild form or show no symptoms at all. Among the factors that may explain these differences in disease expression are modifier genes. In this paper, we review the different strategies that can be used to identify modifier genes and explain their advantages and limitations. We focus mainly on the statistical aspects but illustrate our points with a variety of examples from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abecasis GR, Cardon LR, Cookson WO (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis S, Beckmann J (2006) Mendelian disorders deserve more attention. Nat Rev Genet 7:277–282

    Article  PubMed  CAS  Google Scholar 

  • Beaumont V, Jacotot B, Beaumont JL (1976) Ischaemic disease in men and women with familial hypercholesterolaemia and xanthomatosis: a comparative study of genetic and environmental factors in 274 heterozygous cases. Atherosclerosis 24:441–450

    Article  PubMed  CAS  Google Scholar 

  • Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8:639–646

    Article  PubMed  CAS  Google Scholar 

  • Blackman S, Deering-Brose R, McWilliams R, Naughton K, Coleman B, Lai T, Algire M, Beck S, Hoover-Fong J, Hamosh A, Fallin M, West K, Arking D, Chakravarti A, Cutler D, Cutting G (2006) Relative contribution of genetic and nongenetic modifiers to intestinal obstruction in cystic fibrosis. Gastroenterology 131:1030–1039

    Article  PubMed  Google Scholar 

  • Bourgain C, Genin E, Cox N, Clerget-Darpoux F (2007) Are genome-wide association studies all that we need to dissect the genetic component of complex human diseases? Eur J Hum Genet 15:260–263

    Article  PubMed  CAS  Google Scholar 

  • Brinkman R, Dubé M, Rouleau G, Orr A, Samuels M (2006) Human monogenic disorders: a source of novel drug targets. Nat Rev Genet 7:249–260

    Article  PubMed  CAS  Google Scholar 

  • Burghes AH, Vaessin HE, de La Chapelle A (2001) Genetics. The land between Mendelian and multifactorial inheritance. Science 293:2213–2214

    CAS  Google Scholar 

  • Carayol J, Bonaiti-Pellie C (2004) Estimating penetrance from family data using a retrospective likelihood when ascertainment depends on genotype and age of onset. Genet Epidemiol 27:109–117

    Article  PubMed  Google Scholar 

  • Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS (2007) Replicating genotype-phenotype associations. Nature 447:655–660

    Article  PubMed  CAS  Google Scholar 

  • Charron P, Héron D, Gargiulo M, Richard P, Dubourg O, Desnos M, Bouhour J, Feingold J, Carrier L, Hainque B, Schwartz K, Komajda M (2002) Genetic testing and genetic counselling in hypertrophic cardiomyopathy: the French experience. J Med Genet 39:741–746

    Article  PubMed  CAS  Google Scholar 

  • Chaudru V, Laud K, Avril MF, Miniere A, Chompret A, Bressac-de Paillerets B, Demenais F (2005) Melanocortin-1 receptor (MC1R) gene variants and dysplastic nevi modify penetrance of CDKN2A mutations in French melanoma-prone pedigrees. Cancer Epidemiol Biomarkers Prev 14:2384–2390

    Article  PubMed  CAS  Google Scholar 

  • Clerget-Darpoux F, Bonaiti-Pellie C (1992) Strategies based on marker information for the study of human diseases. Ann Hum Genet 56:145–153

    Article  PubMed  CAS  Google Scholar 

  • Clerget-Darpoux F, Elston RC (2007) Are linkage analysis and the collection of family data dead? Prospects for family studies in the age of genome-wide association. Hum Hered 64:91–96

    Article  PubMed  Google Scholar 

  • de Pontual L, Pelet A, Trochet D, Jaubert F, Espinosa-Parrilla Y, Munnich A, Brunet JF, Goridis C, Feingold J, Lyonnet S, Amiel J (2006) Mutations of the RET gene in isolated and syndromic Hirschsprung’s disease in human disclose major and modifier alleles at a single locus. J Med Genet 43:419–423

    Article  PubMed  CAS  Google Scholar 

  • Delaunay J, Wilmotte R, Alloisio N, Marechal J (1995) The quiet yet dangerous alpha[LELY] allele of red cell spectrin. MS Med sci 11:752–754

    Google Scholar 

  • Dietrich W, Lander E, Smith J, Moser A, Gould K, Luongo C, Borenstein N, Dove W (1993) Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75:631–639

    Article  PubMed  CAS  Google Scholar 

  • Drumm ML, Konstan MW, Schluchter MD, Handler A, Pace R, Zou F, Zariwala M, Fargo D, Xu A, Dunn JM, Darrah RJ, Dorfman R, Sandford AJ, Corey M, Zielenski J, Durie P, Goddard K, Yankaskas JR, Wright FA, Knowles MR (2005) Genetic modifiers of lung disease in cystic fibrosis. N Engl J Med 353:1443–1453

    Article  PubMed  CAS  Google Scholar 

  • Encode-Project-Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  Google Scholar 

  • Epstein MP, Allen AS, Satten GA (2007) A simple and improved correction for population stratification in case-control studies. Am J Hum Genet 80:921–930

    Article  PubMed  CAS  Google Scholar 

  • Fardo D, Celedon JC, Raby BA, Weiss ST, Lange C (2007) On dichotomizing phenotypes in family-based association tests: quantitative phenotypes are not always the optimal choice. Genet Epidemiol 31:376–382

    Article  PubMed  Google Scholar 

  • Feingold E (2001) Methods for linkage analysis of quantitative trait loci in humans. Theor Popul Biol 60:167–180

    Article  PubMed  CAS  Google Scholar 

  • Feingold J (2000) Les gènes modificateurs dans les maladies héréditaires. Médecine Sciences 16:I–V

    Google Scholar 

  • Forissier J, Charron P, Tezenas du Montcel S, Hagège A, Isnard R, Carrier L, Richard P, Desnos M, Bouhour J, Schwartz K, Komajda M, Dubourg O (2005) Diagnostic accuracy of a 2D left ventricle hypertrophy score for familial hypertrophic cardiomyopathy. Eur Heart J 26:1882–1886

    Article  PubMed  Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer, MA

  • Gayan J, Brocklebank D, Andresen JM, Alkorta-Aranburu G, Zameel Cader M, Roberts SA, Cherny SS, Wexler NS, Cardon LR, Housman DE (2008) Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds. Genet Epidemiol 32:445–453

    Article  PubMed  Google Scholar 

  • Gayther S, Mangion J, Russell P, Seal S, Barfoot R, Ponder B, Stratton M, Easton D (1997) Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nat Genet 15:103–105

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb L, Petersen R, Tabaton M, Brown P, LeBlanc A, Montagna P, Cortelli P, Julien J, Vital C, Pendelbury W (1992) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258:806–808

    Article  PubMed  CAS  Google Scholar 

  • Gouya L, Deybach J, Lamoril J, Da Silva V, Beaumont C, Grandchamp B, Nordmann Y (1996) Modulation of the phenotype in dominant erythropoietic protoporphyria by a low expression of the normal ferrochelatase allele. Am J Hum Genet 58:292–299

    PubMed  CAS  Google Scholar 

  • Gouya L, Puy H, Lamoril J, Da Silva V, Grandchamp B, Nordmann Y, Deybach J (1999) Inheritance in erythropoietic protoporphyria: a common wild-type ferrochelatase allelic variant with low expression accounts for clinical manifestation. Blood 93:2105–2110

    PubMed  CAS  Google Scholar 

  • Gouya L, Martin-Schmitt C, Robreau A, Austerlitz F, Da Silva V, Brun P, Simonin S, Lyoumi S, Grandchamp B, Beaumont C, Puy H, Deybach J (2006) Contribution of a common single-nucleotide polymorphism to the genetic predisposition for erythropoietic protoporphyria. Am J Hum Genet 78:2–14

    Article  PubMed  CAS  Google Scholar 

  • Grüneberg H (1963) The pathology of development; a study of inherited skeletal disorders in animals. Wiley, New York

    Google Scholar 

  • Haldane J (1941) The relative importance of principal and modifying genes in determining some human diseases. J Genet 41:149–157

    Article  Google Scholar 

  • Hall J, Horton W (1997) Genetics glossary. Growth Genet Horm J, online. Available from http://www.kumc.edu/gec/gloss.html

  • Hauser ER, Watanabe RM, Duren WL, Bass MP, Langefeld CD, Boehnke M (2004) Ordered subset analysis in genetic linkage mapping of complex traits. Genet Epidemiol 27:53–63

    Article  PubMed  Google Scholar 

  • Houlston RS, Tomlinson IP (1998) Modifier genes in humans: strategies for identification. Eur J Hum Genet 6:80–88

    Article  PubMed  CAS  Google Scholar 

  • Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, Scambler PJ, Davidson WS, Beales PL, Lupski JR (2001) Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293:2256–2259

    Article  PubMed  CAS  Google Scholar 

  • Komajda M, Charron P (2004) A new approach for the identification of modifier genes in heart failure. Pharmacogenomics J 4:221–223

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix.Heredity 95:221–227

    Article  PubMed  CAS  Google Scholar 

  • Li J-L, Hayden M, Almqvist E, Brinkman R, Durr A, Dodé C, Morrison P, Suchowersky O, Ross C, Margolis R, Rosenblatt A, Gomez-Tortosa E, Cabrero D, Novelletto A, Frontali M, Nance M, Trent R, McCusker E, Jones R, Paulsen J, Harrison M, Zanko A, Abramson R, Russ A, Knowlton B, Djoussé L, Mysore J, Tariot S, Gusella M, Wheeler V, Atwood L, Cupples L, Saint-Hilaire M, Cha J, Hersch S, Koroshetz W, Gusella J, MacDonald M, Myers R (2003) A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study. Am J Hum Genet 73:682–687

    Article  PubMed  CAS  Google Scholar 

  • Li J-L, Hayden M, Warby S, Durr A, Morrison P, Nance M, Ross C, Margolis R, Rosenblatt A, Squitieri F, Frati L, Gomez-Tortosa E, Garcia C, Suchowersky O, Klimek M, Trent R, McCusker E, Novelletto A, Frontali M, Paulsen J, Jones R, Ashizawa T, Lazzarini A, Wheeler V, Prakash R, Xu G, Djousse L, Mysore J, Gillis T, Hakky M, Cupples LA, Saint-Hilaire M, Cha J-H, Hersch S, Penney J, Harrison M, Perlman S, Zanko A, Abramson R, Lechich A, Duckett A, Marder K, Conneally PM, Gusella J, MacDonald M, Myers R (2006) Genome-wide significance for a modifier of age at neurological onset in Huntington’s disease at 6q23–24: the HD MAPS study. BMC Med Genet 7:71

    Article  PubMed  CAS  Google Scholar 

  • Luca D, Ringquist S, Klei L, Lee AB, Gieger C, Wichmann HE, Schreiber S, Krawczak M, Lu Y, Styche A, Devlin B, Roeder K, Trucco M (2008) On the use of general control samples for genome-wide association studies: genetic matching highlights causal variants. Am J Hum Genet 82:453–463

    Article  PubMed  CAS  Google Scholar 

  • Lyonnet S, Feingold J, Frezal J (2003) Genotype–phenotype relationships. In: DN C (ed) Nature encyclopedia of human genome. Nature Publishing Group, London, pp 56–63

    Google Scholar 

  • Macgregor S, Craddock N, Holmans PA (2006) Use of phenotypic covariates in association analysis by sequential addition of cases. Eur J Hum Genet 14:529–534

    Article  PubMed  CAS  Google Scholar 

  • Milet J, Dehais V, Bourgain C, Jouanolle AM, Mosser A, Perrin M, Morcet J, Brissot P, David V, Deugnier Y, Mosser J (2007) Common variants in the BMP2, BMP4, and HJV genes of the hepcidin regulation pathway modulate HFE hemochromatosis penetrance. Am J Hum Genet 81:799–807

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH (2001) Modifier genes in mice and humans. Nat Rev Genet 2:165–174

    Article  PubMed  CAS  Google Scholar 

  • Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769

    Article  PubMed  CAS  Google Scholar 

  • Okun MS, Thommi N (2004) Americo Negrette (1924 to 2003): Diagnosing Huntington disease in Venezuela. Neurology 63:340–343

    PubMed  Google Scholar 

  • Oprea GE, Krober S, McWhorter ML, Rossoll W, Muller S, Krawczak M, Bassell GJ, Beattie CE, Wirth B (2008) Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320:524–527

    Article  PubMed  CAS  Google Scholar 

  • Perdry H, Babron M-C, Clerget-Darpoux F (2008) The Ordered Transmission Disequilibrium Test: detection of modifier genes. Genet Epidemiol. Published Online: June 16 2008. doi:10.1002/gepi.20348

  • Perdry H, Maher BS, Babron MC, McHenry T, Clerget-Darpoux F, Marazita ML (2007) An ordered subset approach to including covariates in the transmission disequilibrium test. BMC Proc 1(Suppl 1):S77

    Article  PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Butler J, Patterson N, Capelli C, Pascali VL, Scarnicci F, Ruiz-Linares A, Groop L, Saetta AA, Korkolopoulou P, Seligsohn U, Waliszewska A, Schirmer C, Ardlie K, Ramos A, Nemesh J, Arbeitman L, Goldstein DB, Reich D, Hirschhorn JN (2008) Discerning the ancestry of European Americans in genetic association studies. PLoS Genet 4:e236

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150. doi:10.1093/bioinformatics/19.1.149

    Google Scholar 

  • Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet J, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232

    Article  PubMed  Google Scholar 

  • Schluchter MD, Konstan MW, Drumm ML, Yankaskas JR, Knowles MR (2006) Classifying severity of cystic fibrosis lung disease using longitudinal pulmonary function data. Am J Respir Crit Care Med 174:780–786

    Article  PubMed  Google Scholar 

  • Shattuck-Eidens D, McClure M, Simard J, Labrie F, Narod S, Couch F, Hoskins K, Weber B, Castilla L, Erdos M (1995) A collaborative survey of 80 mutations in the BRCA1 breast and ovarian cancer susceptibility gene. Implications for presymptomatic testing and screening. JAMA 273:535–541

    Article  PubMed  CAS  Google Scholar 

  • Silvers WK (1979) The coat colors of mice: a model for mammalian gene action and interaction. Springer Verlag, New York

    Google Scholar 

  • Slavotinek A, Biesecker LG (2003) Genetic modifiers in human development and malformation syndromes, including chaperone proteins. Hum Mol Genet 12:R45–R50

    Article  PubMed  CAS  Google Scholar 

  • Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516

    PubMed  CAS  Google Scholar 

  • Spirito P, Marron BJ (1990) Relation between extent of left ventricular hypertrophy and occurrence of sudden cardiac death in hypertrophic cardiomyopathy. J Am Coll cardiol 15:1020–1027

    Google Scholar 

  • Steffens M, Lamina C, Illig T, Bettecken T, Vogler R, Entz P, Suk EK, Toliat MR, Klopp N, Caliebe A, Konig IR, Kohler K, Ludemann J, Diaz Lacava A, Fimmers R, Lichtner P, Ziegler A, Wolf A, Krawczak M, Nurnberg P, Hampe J, Schreiber S, Meitinger T, Wichmann HE, Roeder K, Wienker TF, Baur MP (2006) SNP-based analysis of genetic substructure in the German population. Hum Hered 62:20–29

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Kashiwagi A, Mori K, Urabe I, Yomo T (2004) History dependent effects on phenotypic expression of a newly emerged gene. Biosystems 77:137–141

    Article  PubMed  CAS  Google Scholar 

  • Titeux M, Pendaries V, Tonasso L, Decha A, Bodemer C, Hovnanian A (2008) A frequent functional SNP in the MMP1 promoter is associated with higher disease severity in recessive dystrophic epidermolysis bullosa. Hum Mutat 29:267–276

    Article  PubMed  CAS  Google Scholar 

  • Vanscoy L, Blackman S, Collaco J, Bowers A, Lai T, Naughton K, Algire M, McWilliams R, Beck S, Hoover-Fong J, Hamosh A, Cutler D, Cutting G (2007) Heritability of lung disease severity in cystic fibrosis. Am J Respir Crit Care Med 175:1036–1043

    Article  PubMed  CAS  Google Scholar 

  • Wang G-S, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761

    Google Scholar 

  • Watkins H, Rosenzweig A, Hwang D, Levi T, McKenna W, Seidman C, Seidman J (1992) Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 326:1108–1114

    PubMed  CAS  Google Scholar 

  • Wexler N, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts S, Gayán J, Brocklebank D, Cherny S, Cardon L, Gray J, Dlouhy S, Wiktorski S, Hodes M, Conneally P, Penney J, Gusella J, Cha J, Irizarry M, Rosas D, Hersch S, Hollingsworth Z, MacDonald M, Young A, Andresen J, Housman D, De Young M, Bonilla E, Stillings T, Negrette A, Snodgrass S, Martinez-Jaurrieta M, Ramos-Arroyo M, Bickham J, Ramos J, Marshall F, Shoulson I, Rey G, Feigin A, Arnheim N, Acevedo-Cruz A, Acosta L, Alvir J, Fischbeck K, Thompson L, Young A, Dure L, O’Brien C, Paulsen J, Brickman A, Krch D, Peery S, Hogarth P, Higgins DJ, Landwehrmeyer B (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA 101:3498–3503

    Article  PubMed  CAS  Google Scholar 

  • Witsch-Baumgartner M, Schwentner I, Gruber M, Benlian P, Bertranpetit J, Bieth E, Chevy F, Clusellas N, Estivill X, Gasparini P, Giros M, Kelley RI, Krajewska-Walasek M, Menzel J, Miettinen TA, Ogorelkova M, Rossi M, Scala I, Schinzel A, Schmidt K, Schonitzer D, Seemanova E, Sperling K, Syrrou M, Talmud P, Wollnik B, Krawczak M, Labuda D, Utermann G (2008) Age and origin of major Smith-Lemli-Opitz Syndrome (SLOS) mutations in European populations. J Med Genet 45(4):200–209

    Article  PubMed  CAS  Google Scholar 

  • Wolf U (1997) Identical mutations and phenotypic variation. Hum Genet 100:305–321

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Kaplan NL, Taylor JA (2007) Tag SNP selection for candidate gene association studies using HapMap and gene resequencing data. Eur J Hum Genet 15:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Zielenski J, Corey M, Rozmahel R, Markiewicz D, Aznarez I, Casals T, Larriba S, Mercier B, Cutting GR, Krebsova A, Macek M Jr, Langfelder-Schwind E, Marshall BC, DeCelie-Germana J, Claustres M, Palacio A, Bal J, Nowakowska A, Ferec C, Estivill X, Durie P, Tsui LC (1999) Detection of a cystic fibrosis modifier locus for meconium ileus on human chromosome 19q13. Nat Genet 22:128–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank three anonymous reviewers for their very constructive comments on this paper.s

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Clerget-Darpoux.

Appendix: Multiple testing issues in association studies

Appendix: Multiple testing issues in association studies

When the number of markers tested increases, it is necessary to take into account the fact that multiple tests are performed. That is, if one defines as significant any tests with a P value below 5%, and only one test is performed, the probability of incorrectly rejecting the null hypothesis and concluding in an association is 5%. If N tests are performed, this probability is increased proportionally: when N = 100 there will be on average five false-positive results and if N = 100,000 this number will be 5,000. To limit the proportion of false positives, corrections can be made for multiple testing. One of the most commonly is the Bonferroni correction. To ensure a global type-one error of 5% for N tests, it considers significant only tests with a P value of less than 0.05/N. This correction is conservative when tests are not independent. Other less conservative corrections have been proposed, which take into account the correlation that may exist between markers through linkage disequilibrium (Li and Ji 2005; Nyholt 2004). Even after accounting for linkage disequilibrium, the significance level for ensuring a genome-wide type 1 error of 5% remains on the order of 10−7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Génin, E., Feingold, J. & Clerget-Darpoux, F. Identifying modifier genes of monogenic disease: strategies and difficulties. Hum Genet 124, 357–368 (2008). https://doi.org/10.1007/s00439-008-0560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-008-0560-2

Keywords

Navigation