Skip to main content

Advertisement

Log in

PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Familial hypophosphatemic rickets is a rare disease, which is mostly transmitted as an X-linked dominant trait, and mutations on the phosphate regulating gene with homologies to endopeptidases on the X-chromosome (PHEX) gene are responsible for the disease in most familial cases. In this study we analyzed PHEX in a large cohort of 118 pedigrees representing 56 familial cases and 62 sporadic cases. The high-resolution melting curves technique was tested as a screening method, along with classical sequencing. PHEX mutations have been found in 87% of familial cases but also in 72% of sporadic cases. Missense mutations were found in 16 probands, two of which being associated with other PHEX mutations resulting into truncated proteins. By plotting missense mutations described so far on a 3D model of PHEX we observed that these mutations focus on two regions located in the inner part of the PHEX protein. Family members of 13 sporadic cases were analyzed and a PHEX mutation was detected in one of the apparently healthy mother. These results highlight the major role of PHEX in X-linked dominant hypophosphatemic rickets, and give new clues regarding the genetic analysis of the disease. A screening of the different family members should be mandatory when a PHEX mutation is assessed in a sporadic case and the search for another PHEX mutation should be systematically proceed when facing a missense mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albright F, Butler AM, Bloomberg E (1937) Rickets resistant to vitamin D therapy. Am J Dis Child 54:529–547

    Google Scholar 

  • Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium–phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192

    Article  PubMed  CAS  Google Scholar 

  • Bianchetti L, Oudet C, Poch O (2002) M13 endopeptidases: new conserved motifs correlated with structure, and simultaneous phylogenetic occurrence of PHEX and the bony fish. Proteins 47:481–488

    Article  PubMed  CAS  Google Scholar 

  • Bland ND, Pinney JW, Thomas JE, Turner AJ, Isaac RE (2008) Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol Biol 8:16

    Article  PubMed  CAS  Google Scholar 

  • Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, Nabeshima Y, Reyes-Mugica M, Carpenter TO, Lifton RP (2008) A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA 105:3455–3460

    Article  PubMed  CAS  Google Scholar 

  • Cho HY, Lee BH, Kang JH, Ha IS, Cheong HI, Choi Y (2005) A clinical and molecular study of hypophosphatémic rickets in children. Pediatr Res 58:329–333

    Article  PubMed  CAS  Google Scholar 

  • Chong A, Zhang G, Bajic V (2004) Information for the coordinates of exons (ICE): a human splice sites database. Genomics 84:762–766

    Article  PubMed  CAS  Google Scholar 

  • Christie PT, Harding B, Nesbit MA, Whyte MP, Thakker RV (2001) X-linked hypophosphatemia attributable to pseudoexons of the PHEX gene. J Clin Endocrinol Metab 86:3840–3844

    Article  PubMed  CAS  Google Scholar 

  • Consortium ADHR (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348

    Article  CAS  Google Scholar 

  • Dixon PH, Christie PT, Wooding C, Trump D, Grieff M, Holm I, Gertner JM, Schmidtke J, Shah B, Shaw N, Smith C, Tau C, Schlessinger D, Whyte MP, Thakker RV (1998) Mutational analysis of PHEX gene in X-linked hypophosphatemia. J Clin Endocrinol Metab 83:3615–3623

    Article  PubMed  CAS  Google Scholar 

  • Econs MJ, Friedman NE, Rowe PSN, Speer MC, Francis F, Strom M, Oudet C, Smith JA, Minomiya JT, Lee BE, Bergen H (1998) A PHEX Gene mutation is responsible for adult-onset vitamin D-resistant hypophosphatemic osteomalacia: Evidence that the disorder is not a distinct entity from X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 83:3459–3462

    Article  PubMed  CAS  Google Scholar 

  • Filisetti D, Ostermann G, von Bredow M, Strom T, Filler G, Ehrich J, Pannetier S, Garnier JM, Rowe PSN, Francis F, Julienne A, Hanauer A, Econs MJ, Oudet C (1999) Non-random distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues. Eur J Hum Genet. 7(5):615–619

    Article  PubMed  CAS  Google Scholar 

  • Francis F, Strom TM, Hennig S, Boddrich A, Lorenz B, Brandau O, Mohnike KL, Cagnoli M, Steffens C, Klages S, Borzym K, Pohl T, Oudet C, Econs MJ, Rowe PS, Reinhardt R, Meitinger T, Lehrach H (1997) Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 7:573–585

    PubMed  CAS  Google Scholar 

  • Goji K, Ozaki K, Sadewa AH, Nishio H, Matsuo M (2006) Somatic and germline mosaïcism for a mutation of the PHEX gne can lead to transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait. J Clin Endocrinol Metab 91:365–370

    Article  PubMed  CAS  Google Scholar 

  • Holm IA, Huang X, Kunkel LM (1997) Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am J Hum Genet 60:790–797

    PubMed  CAS  Google Scholar 

  • Hyp consortium (1995) A gene (PEX) with homogies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11:130–136

    Article  Google Scholar 

  • Ichikawa S, Traxler EA, Estwick SA, Curry LR, Johnson ML, Sorenson AH, Imel EA, Econs MJ (2008) Mutational survey of the PHEX gene in patients with X-linked hypophosphatemic rickets. Bone 43:663–666

    Article  PubMed  CAS  Google Scholar 

  • Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ,Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 1;379(6564):445–449.

    Google Scholar 

  • Lorenz-Depiereux B, Bastepe M, Benet-Pagès A, Amyere M, Wagenstaller J, Müller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Jüppner H, Strom TM (2006a) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250

    Article  PubMed  CAS  Google Scholar 

  • Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006b) Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 78(2):193–201

    Article  PubMed  CAS  Google Scholar 

  • Oefner C, D’Arcy A, Hennig M, Winkler FK, Dale GE (2000) Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J Mol Biol 296:341–349

    Article  PubMed  CAS  Google Scholar 

  • Pieper U, Eswar N, Braberg H, Madhusudhan MS, Davis F, Stuart AC, Mirkovic N, Rossi A, Marti-Renom MA, Fiser A, Webb B, Greenblatt D, Huang C, Ferrin T, Sali A (2004) MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 32:D217–D222

    Article  PubMed  CAS  Google Scholar 

  • Popowska E, Pronicka E, Sułek A, Jurkiewicz D, Rowe P, Rowinska E, Krajewska-Walasek M (2000) X-linked hypophosphatemia in Polish patients. 1. Mutations in the PHEX gene. J Appl Genet 41:293–302

    PubMed  CAS  Google Scholar 

  • Rowe PSN (2004) The wrickkened pathways of FGF23, MEPE and PHEX. Crit Rev Oral Biol Med 15:264–281

    Article  PubMed  Google Scholar 

  • Rowe PS, Oudet CL, Francis F, Sinding C, Pannetier S, Econs MJ, Strom TM, Meitinger T, Garabedian M, David A, Macher MA, Questiaux E, Popowska E, Pronicka E, Read AP, Mokrzycki A, Glorieux FH, Drezner MK, Hanauer A, Lehrach H, Goulding JN, O’Riordan JL (1997) Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP). Hum Mol Genet 6:539–549

    Article  PubMed  CAS  Google Scholar 

  • Ruchon AF, Tenenhouse HS, Marcinkiewicz M, Siegfried G, Aubin JE, DesGroseillers L, Crine P, Boileau G (2000) Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res 15:1440–1450

    Article  PubMed  CAS  Google Scholar 

  • Sabbagh Y, Boileau G, DesGroseillers L, Tenenhouse HS (2001) Disease-causing missense mutations in the PHEX gene interfere with membrane targeting of the recombinant protein. Hum Mol Genet 10:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Sabbagh Y, Boileau G, Campos M, Carmona AK, Tenenhouse HS (2003) Structure and function of disease-causing missense mutations in the PHEX gene. J Clin Endocrinol Metab 88:2213–2222

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Tajima T, Nakae J, Adachi M, Asakura Y, Tachibana K, Suwa S, Katsumata N, Tanaka T, Hayashi Y, Abe S, Murashita M, Okuhara K, Shinohara N, Fujieda K (2000) Three novel PHEX gene mutations in Japanese patients with X-linked hypophosphatemic rickets. Pediatr Res 48:536–540

    Article  PubMed  CAS  Google Scholar 

  • Song HR, Park JW, Cho DY, Yang JH, Yoon HR, Jung SC (2007) PHEX gene mutations and genotype-phenotype analysis of Korean patients with hypophosphatemic rickets. J Korean Med Sci 22:981–986

    Article  PubMed  CAS  Google Scholar 

  • Thakker RV, O’Riordan JL (1988) Inherited forms of rickets and osteomalacia. Baillieres Clin Endocrinol Metab 2:91–157

    Google Scholar 

  • Thompson DL, Sabbagh Y, Tenenhouse HS, Roche PC, Drezner MK, Salisbury JL, Grande JP, Poeschla EM, Kumar R (2002) Ontogeny of Phex/PHEX protein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res 17(2):311–320

    Google Scholar 

  • Turner AJ, Tanzawa K (1997) Mammalian embrane metallopeptidases : NEP, ECE, Kell and PEX. FASEB J 11:355–364

    PubMed  CAS  Google Scholar 

  • Tyynismaa H, Kaitila I, Näntö-Salonen K, Ala-Houhala M, Alitalo T (2000) Identification of fifteen novel Phex gene mutations in finnish patients with hypophosphatemic rickets. Hum Mutat 15:383–384

    Article  PubMed  CAS  Google Scholar 

  • Winters RW, Graham JB, Williams TF (1958) A genetic study of familial hypophosphatemia and vitamin D-resistant rickets with a review of the literature. Medicine 37:97–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Roche Diagnostics Corporation for providing the HRM software, and all patients, as well as their families and medical practitioners, who eagerly contributed to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Gaucher.

Electronic supplementary material

Below is the link to the Electronic supplementary material.

Supplementary material 1 (DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaucher, C., Walrant-Debray, O., Nguyen, TM. et al. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet 125, 401–411 (2009). https://doi.org/10.1007/s00439-009-0631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0631-z

Keywords

Navigation