Skip to main content

Advertisement

Log in

Genetic influence on variation in serum uric acid in American Indians: the strong heart family study

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Hyperuricemia is associated with the metabolic syndrome, gout, renal and cardiovascular disease (CVD). American Indians have high rates of CVD and 25% of individuals in the strong heart family study (SHFS) have high serum uric acid levels. The aim of this study was to investigate the genetic determinants of serum uric acid variation in American Indian participants of the SHFS. A variance component decomposition approach (implemented in SOLAR) was used to conduct univariate genetic analyses in each of three study centers and the combined sample. Serum uric acid was adjusted for age, sex, age × sex, BMI, estimated glomerular filtration rate, alcohol intake, diabetic status and medications. Overall mean ± SD serum uric acid for all individuals was 5.14 ± 1.5 mg/dl. Serum uric acid was found to be significantly heritable (0.46 ± 0.03 in all centers, and 0.39 ± 0.07, 0.51 ± 0.05, 0.44 ± 0.06 in Arizona, Dakotas and Oklahoma, respectively). Multipoint linkage analysis showed significant evidence of linkage for serum uric acid on chromosome 11 in the Dakotas center [logarithm of odds score (LOD) = 3.02] and in the combined sample (LOD = 3.56) and on chromosome 1 (LOD = 3.51) in the combined sample. A strong positional candidate gene in the chromosome 11 region is solute carrier family22, member 12 (SLC22A12) that encodes a major uric acid transporter URAT1. These results show a significant genetic influence and a possible role for one or more genes on chromosomes 1 and 11 on the variation in serum uric acid in American Indian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alderman MH (2002) Uric acid and cardiovascular risk. Curr Opin Pharmacol 2:126–130

    Article  CAS  PubMed  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Blangero J, Almasy L (1997) Multipoint oligogenic linkage analysis of quantitative traits. Genet Epidemiol 14:959–964

    Article  CAS  PubMed  Google Scholar 

  • Brandstatter A, Keichl S, Kollerits B, Hunt SC, Heid IM, Coassin S, Willeit J, Adams TD, Illig T, Hopkins PN, Kronenberg F (2008) The gender-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes care 31:1662–1667

    Article  PubMed  Google Scholar 

  • Cameron JS, Simmonds HA (2005) Hereditary hyperuricemia and renal disease. Semin Nephrol 25:9–18

    Article  PubMed  Google Scholar 

  • Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH (2009) Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum 61:225–232

    Article  CAS  PubMed  Google Scholar 

  • Cirillo P, Sato W, Reungui S, Heinig M, Gersch M, Sautin Y, Nakagawa T, Johnson RJ (2006) Uric acid, the metabolic syndrome and renal disease. J Am Soc Nephrol 17:165–168

    Article  Google Scholar 

  • Clausen JO, Borch-Johnsen K, Ibsen H, Pedersen O (1998) Analysis of the relationship between fasting serum uric acid and insulin sensitivity index in a population-based sample of 380 young healthy Caucasians. Eur J Epidemiol 138:63–69

    CAS  Google Scholar 

  • Conen D, Wietlisbach V, Bovet P, Shamlaye C, Riesen W, Paccaud F, Burnier M (2004) Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health 4:9

    Article  CAS  PubMed  Google Scholar 

  • Dehghan A, van Hoek M, Sijbrands EJG, Hofman A, Whiteman JCM (2008a) High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care 31:361–362

    Article  CAS  PubMed  Google Scholar 

  • Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WHL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Dujin CM, Wittemant JC, Coresh J, Fox CS (2008b) Association of three genetic loci with uric acid concentrations and risk of gout: a genome-wide association study. Lancet 372:1953–1961

    Article  CAS  PubMed  Google Scholar 

  • Dixon AS (1960) Familial hyperuricemic nephropathy. Proc R Soc Med 53:967–968

    CAS  PubMed  Google Scholar 

  • Domagk GF, Schlicke HH (1968) A colorimetric method using uricase and peroxidase for the determination of uric acid. Anal Biochem 22:219–224

    Article  CAS  PubMed  Google Scholar 

  • Döring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, Fischer G, Henke K, Klopp N, Kronenberg F, Paulweber B, Pfeufer A, Rosskopf D, Völzke H, Illig T, Meitinger T, Wichmann HE, Meisinger C (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 40:430–436

    Article  PubMed  Google Scholar 

  • Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kannai Y, Endou H (2002) Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature 417:447–452

    CAS  PubMed  Google Scholar 

  • Forman JP, Choi H, Curhan GC (2009) Uric acid and insulin sensitivity and risk of incident hypertension. Arch Intern Med 169:155–162

    Article  CAS  PubMed  Google Scholar 

  • Freedman DS, Williamson DF, Gunter EW, Byers T (1995) Relation of serum uric acid to mortality and ischemic heart disease. The NHANES I epidemiologic follow-up study. Am J Epidemiol 141:637–644

    CAS  PubMed  Google Scholar 

  • Friedlander Y, Kark JD, Stein Y (1988) Family resemblance for serum uric acid in a Jerusalem sample of families. Hum Genet 79:58–63

    Article  CAS  PubMed  Google Scholar 

  • Hayden MR, Tyagi SC (2004) Uric acid: a new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: the urate redox shuttle. Nutr Metab 19:10

    Article  Google Scholar 

  • Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61:748–760

    Article  CAS  PubMed  Google Scholar 

  • Hikita M, Ohno I, Mori Y, Ichida K, Yokose T, Hosoya T (2007) Relationship between hyperuricemia and body fat distribution. Intern Med 46:1353–1358

    Article  PubMed  Google Scholar 

  • Howard BV, Lee ET, Cowan LD (1999) Rising tide of cardiovascular disease in American Indians: the strong heart study. Circulation 99:2389–2395

    CAS  PubMed  Google Scholar 

  • Ichida K, Hosoyamada M, Kamatani N, Kamitsuji S, Hisatome I, Shibasaki T, Hosoya T (2008) Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet 74:243–251

    Article  CAS  PubMed  Google Scholar 

  • Jang WC, Nam YH, Park SM, Ahn YC, Park SH, Choe JY, Shin IH, Kim SK (2008) T6092C polymorphism of SLC22A12 gene is associated with serum uric acid concentrations in Korean male subjects. Clin Chim Acta 398:140–144

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ, Segal MS, Srinivas T, Ejaz A, Mu W, Roncal C, Sanchez-Lozada L, Gersch M, Rodriguez-Iturbe B, Kang DH, Acosta JH (2005) Essential hypertension, progressive renal disease and uric acid: a pathogenic link? J Am Soc Nephrol 16:1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, Krotova K, Block ER, Prabhakar S, Johnson RJ (2005) Hyperuricemia induces endothelial dysfunction. Kidney Int 67:1739–1742

    Article  PubMed  Google Scholar 

  • Komoda F, Sekine T, Inatomi J, Enomoto A, Endou H, Ota T, Matsuyama T, Ogata T, Ikeda M, Awazu M, Muroya K, Kamimaki I, Igarashi T (2004) The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol 19:728–733

    Article  PubMed  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    CAS  PubMed  Google Scholar 

  • Krishnan E, Kwoh CK, Schumacher HR, Kuller L (2007) Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension 49:298–303

    Article  CAS  PubMed  Google Scholar 

  • Langford HG, Blaufox MD, Borhani NO, Curb JD, Molteni A, Schneider KA, Pressel S (1987) Is thiazide-produced uric acid elevation harmful? Analysis of data from the hypertension detection and follow-up program. Arch Intern Med 147:645–649

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Choi HJ, Lee BH, Kang HK, Chin HJ, Yoon HJ, Ha IS, Kim S, Choi Y, Cheong HI (2008) Prevalence of hypouricaemia and SLC22A12 mutations in healthy Korean subjects. Nephrology (Carlton) 13:661–666

    Article  CAS  Google Scholar 

  • Lehto S, Niskanen L, Ronnemaa T, Laakso M (1998) Serum uric acid is a strong predictor of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke 29:635–639

    CAS  PubMed  Google Scholar 

  • Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470

    CAS  PubMed  Google Scholar 

  • Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, Lai S, Dei M, Orru M, Albai G, Bandinedlli S, Schlessinger D, Lakatta E, Scuteri A, Najjar SS, Guralnik J, Naitza S, Crisponi L, Cao A, Abecasis G, Ferrucci L, Uda M, Chen WM, Nagaraja R (2007) The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PloS Genet 3:2156–2162

    CAS  Google Scholar 

  • Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N (2008) Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 83:744–751

    Article  CAS  PubMed  Google Scholar 

  • Meyer WJ 3rd, Gill JR Jr, Bartter FC (1975) Gout as a complication of Bartter’s syndrome. A possible role for alkalosis in the decreased clearance of uric acid. Ann Intern Med 83:56–59

    PubMed  Google Scholar 

  • Mikkelsen WM, Dodge HJ, Valkenburg H (1965) The distribution of serum uric acid values in a population unselected as to gout or hyperuricemia. Am J Med 39:242–251

    Article  CAS  PubMed  Google Scholar 

  • Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, Hostetter T, Levey AS, Panteghini M, Welch M, Eckfeldt JH, for the National Kidney Disease Education Program Laboratory Working Group (2006) Recommendations for improving serum creatinine measurement: a report from the laboratory working group of the national kidney disease education program. Clin Chem 52:5–18

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Tuttle KR, Short RA, Johnson RJ (2005) Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol 1:80–86

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Kang D-H, Feig D, Sanchez-Lozada LG, Srinivas TR, Ejaz AA, Segal M (2006) Johnson RJ (2006) Unearthing uric acid: an ancient factor with recently found significance in renal and CVD. Kid Int 69:1722–1725

    Article  CAS  Google Scholar 

  • Nan H, Qiao Q, Soderberg S, Gao W, Zimmet P, Shaw J, Alberti G, Dong Y, Uusitalo U, Pauvaday V, Chitson P, Tuomilehto J (2008) Serum uric acid and components of the metabolic syndrome in non-diabetic populations in Mauritian Indians and Creoles and in Chinese in Qingdao, China. Metab Syndr Relat Disord 6:47–57

    Article  CAS  PubMed  Google Scholar 

  • Nath SD, Voruganti VS, Arar NH, Thameem F, Lopez-Alvarenga JC, Bauer R, MacCluer JW, Blangero J, Comuzzie AG, Abboud HE (2007) Genome scan for determinants of serum uric acid variability. J Am Soc Nephrol 18:3156–3163

    Article  CAS  PubMed  Google Scholar 

  • North KE, Howard BV, Welty TK, Best LG, Lee ET, Yeh JL, Fabsitz RR, Roman MJ, MacCluer JW (2003) Genetic and environmental contributions to cardiovascular disease risk in American-Indians. Am J Epidemiol 157:303–314

    Article  PubMed  Google Scholar 

  • North KE, Göring HHH, Cole SA, Diego VP, Almasy L, Laston S, Cantu T, Howard BV, Lee ET, Best LG, Fabsitz RR, MacCluer JW (2006) Linkage analysis of LDL cholesterol in American Indian populations: the strong heart family study. J Lipid Res 47:59–66

    Article  CAS  PubMed  Google Scholar 

  • Onat A, Uyarel H, Hergenc G, Karabulut A, Albayrak S, San I, Yazici M, Keles I (2006) Serum uric acid is a determinant of metabolic syndrome in a population-based study. Am J Hypertension 19:1055–1062

    Article  CAS  Google Scholar 

  • Rao DC, Laskarzewski PM, Morrison JA, Kelly K, Glueck CJ (1982) The clinical lipid research clinic family study: familial determinants of plasma uric acid. Hum Genet 60:257–261

    Article  CAS  PubMed  Google Scholar 

  • Rathmann W, Funkhouser E, Dyer AR, Roseman JM (1998) Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDIA study. Coronary artery risk development in young adults. Ann Epidemiol 8:250–261

    Article  CAS  PubMed  Google Scholar 

  • Reyes AJ (2003) Cardiovascular drugs and serum uric acid. Cardiovasc Drugs Ther 17:397–414

    Article  CAS  PubMed  Google Scholar 

  • Rice T, Vogler GP, Perry TS, Laskarzewski PM, Province MA, Rao DC (1990) Heterogenity in the familial aggregation of fasting uric acid levels in five North American populations: the lipid research clinics family study. Am J Med Genet 36:219–225

    Article  CAS  PubMed  Google Scholar 

  • Saito-Ohara F, Uchida S, Takeuchi Y, Sasaki S, Hayashi A, Maraumo F, Ikeuchi T (1996) Assignment of the genes encoding the human chloride channels, CLCNKA and CLCNKB, to 1p36 and of CLCN3 to 4q32-q33 by in situ hybridization. Genomics 36:372–374

    Article  CAS  PubMed  Google Scholar 

  • Sica DA, Schoolwerth AC (2002) Uric acid and losartan. Curr Opin Nephrol Hypertens 11:475–482

    Article  PubMed  Google Scholar 

  • Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178

    Article  CAS  PubMed  Google Scholar 

  • Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker sharing statistics. Am J Hum Genet 58:1323–1337

    CAS  PubMed  Google Scholar 

  • Stark K, Reinhard W, Neureuther K, Wiedmann S, Sedlacek K, Baessler A, Fischer M, Weber S, Kaess B, Erdmann J, Schunkert H, Hengstenberg C (2008) Association of common polymorphisms in GLUT9 gene with gout and not with coronary artery disease in a large case–control study. PLoS ONE 3:1–9

    Article  Google Scholar 

  • Stecher RM, Hersh AH, Solomon WM (1949) The heredity of gout and its relationship to familial hyperuricemia. Ann Intern Med 31:595–614

    CAS  PubMed  Google Scholar 

  • Sun L, Wilder K, McPeek MS (2002) Enhanced pedigree error detection. Hum Hered 54:99–110

    Article  PubMed  Google Scholar 

  • Takahashi T, Tsuchida S, Oyamada T, Ohno T, Miyashita M, Saito S, Komatsu K, Takashina K, Takada G (2005) Recurrent URAT1 gene mutations and prevalence of renal hypouricemia in Japanese. Pediatr Nephrol 20:576–578

    Article  PubMed  Google Scholar 

  • Tang W, Miller MB, Rich SS, North KE, Panlow JS, Borecki I, Myers RH, Hopkins PN, Leppert M, Arnett DK (2003) Linkage analysis of a composite factor for the multiple metabolic syndrome. The National Heart, Lung and Blood Institute Family Heart Study. Diabetes 52:2840–2847

    Article  CAS  PubMed  Google Scholar 

  • Tsouli SG, Liberopoulos EN, Mikhailidis DP, Athyros VG, Elisa MS (2006) Elevated serum uric acid levels in metabolic syndrome: an active component or an innocent bystander? Metab Clin Exp 55:1293–1301

    CAS  PubMed  Google Scholar 

  • Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, Knott SA, Kolcic I, Polasek O, Graessler J, Wilson JF, Marinaki A, Riches PL, Shu X, Janicijevic B, Smolej-Narancic N, Gorgoni B, Morgan J, Campbell S, Biloglav Z, Barac-Lauc L, Pericic M, Klaric IM, Zgaga L, Skaric-Juric T, Wild SH, Richardson WA, Hohenstein P, Kimber CH, Tenesa A, Donnelly LA, Fairbanks LD, Aringer M, McKeigue PM, Ralston SH, Morris AD, Rudan P, Hastie ND, Campbell H, Wright AF (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40:437–442

    Article  CAS  PubMed  Google Scholar 

  • Voruganti VS, Nath SD, Cole SA, Thameem F, Jowett JB, Bauer R, MacCluer JW, Blangero J, Comuzzie AG, Abboud HE, Arar NH (2009) Genetics of variation in serum uric acid and cardiovascular risk factors in Mexican-Americans. J Clin Endocrinol Metab 94:632–638

    Article  CAS  PubMed  Google Scholar 

  • Wakida N, Tuyen DG, Adachi M, Miyoshi T, Nonoguchi H, Oka T, Ueda O, Tazawa M, Kurihara S, Yoneta Y, Shimada H, Oda T, Kikuchi Y, Matsuo H, Hosoyamada M, Endou H, Otagiri M, Tomita K, Kitamura K (2005) Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia. J Clin Endocrinol Metab 90:2169–2174

    Article  CAS  PubMed  Google Scholar 

  • Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marçano AC, Hajat C, Burton P, Deloukas P, Brown M, Connell JM, Dominiczak A, Lathrop GM, Webster J, Farrall M, Spector T, Samani NJ, Caulfield MJ, Munroe PB (2008) Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 82:139–149

    Article  CAS  PubMed  Google Scholar 

  • Wannamethee SG (2005) Serum uric acid and risk of coronary heart disease. Curr Pharm Des 11:4125–4132

    Article  CAS  PubMed  Google Scholar 

  • Wilk JB, Djousse L, Borecki I, Atwood LD, Hunt SC, Rich SS, Eckfeldt JH, Dk Arnett, Rao DC, Myers RH (2000) Segregation analysis of serum uric acid in the NHLBI family heart study. Hum Genet 106:355–359

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Guo CY, Cupples A, Levy D, Wilson PWF, Fox CS (2005) Genome-wide search for genes affecting serum uric acid levels: the Framingham heart study. Metab Clin Exp 54:1435–1441

    CAS  PubMed  Google Scholar 

  • Yoo TW, Sang KC, Shin HS, Kim BJ, Kim NS, Kang JH, Lee MH, Park JR, Kim H, Rhee EJ, Lee WY, Kim SW, Ryu SH, Keum DG (2005) Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ J 69:928–933

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the SHFS participants, Indian Health Services facilities, and participating tribal communities for their extraordinary cooperation and involvement, and without whose assistance, this project would not have been possible. The opinions expressed in this paper are those of the author(s) and do not necessarily reflect the views of the Indian Health Service. This work was also supported by grants U01-HL65520, U01-HL41642, U01-HL41652, U01-HL41654 and U01-HL65521 from the National Heart, Lung, and Blood Institute, Bethesda, MD. Development of SOLAR was supported by NIH grant MH59490. This investigation was conducted in part in facilities constructed with support from the Research Facilities Improvement Program under grant numbered C06 RR014578, C06 RR013556, C06 RR015456, and C06 RR017515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Saroja Voruganti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voruganti, V.S., Göring, H.H.H., Mottl, A. et al. Genetic influence on variation in serum uric acid in American Indians: the strong heart family study. Hum Genet 126, 667–676 (2009). https://doi.org/10.1007/s00439-009-0716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0716-8

Keywords

Navigation