Skip to main content

Advertisement

Log in

The application of next-generation sequencing in the autozygosity mapping of human recessive diseases

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Autozygosity, or the inheritance of two copies of an ancestral allele, has the potential to not only reveal phenotypes caused by biallelic mutations in autosomal recessive genes, but to also facilitate the mapping of such mutations by flagging the surrounding haplotypes as tractable runs of homozygosity (ROH), a process known as autozygosity mapping. Since SNPs replaced microsatellites as markers for the purpose of genomewide identification of ROH, autozygosity mapping of Mendelian genes has witnessed a significant acceleration. Historically, successful mapping traditionally required favorable family structure that permits the identification of an autozygous interval that is amenable to candidate gene selection and confirmation by Sanger sequencing. This requirement presented a major bottleneck that hindered the utilization of simplex cases and many multiplex families with autosomal recessive phenotypes. However, the advent of next-generation sequencing that enables massively parallel sequencing of DNA has largely bypassed this bottleneck and thus ushered in an era of unprecedented pace of Mendelian disease gene discovery. The ability to identify a single causal mutation among a massive number of variants that are uncovered by next-generation sequencing can be challenging, but applying autozygosity as a filter can greatly enhance the enrichment process and its throughput. This review will discuss the power of combining the best of both techniques in the mapping of recessive disease genes and offer some tips to troubleshoot potential limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou Jamra R, Philippe O, Raas-Rothschild A, Eck SH, Graf E, Buchert R, Borck G, Ekici A, Brockschmidt FF, Nothen MM, Munnich A, Strom TM, Reis A, Colleaux L (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88:788–795. doi:10.1016/j.ajhg.2011.04.019

    CAS  PubMed  Google Scholar 

  • Abu-Safieh L, Abboud EB, Alkuraya H, Shamseldin H, Al-Enzi S, Al-Abdi L, Hashem M, Colak D, Jarallah A, Ahmad H, Bobis S, Nemer G, Bitar F, Alkuraya FS (2011) Mutation of IGFBP7 causes upregulation of BRAF/MEK/ERK pathway and familial retinal arterial macroaneurysms. Am J Hum Genet 89:313–319. doi:10.1016/j.ajhg.2011.07.010

    CAS  PubMed  Google Scholar 

  • Abu-Safieh L, Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, Al-Zahrani J, Al-Abdi L, Hashem M, Al-Tarimi S, Sebai MA, Shamia A, Ray-Zack MD, Nassan M, Al-Hassnan ZN, Rahbeeni Z, Waheeb S, Alkharashi A, Abboud E, Al-Hazzaa SA, Alkuraya FS (2012) Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res. doi:10.1101/gr.144105.112

    PubMed  Google Scholar 

  • Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS, Aljebreen A, Raddaoui E, Almomen AK, Al-Muhsen S, Geha RS, Alkuraya FS (2012) LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol 130(481–8):e2. doi:10.1016/j.jaci.2012.05.043

    PubMed  Google Scholar 

  • Alazami AM, Alshammari MJ, Salih MA, Alzahrani F, Hijazi H, Seidahmed MZ, Abu Safieh L, Aldosary M, Khan AO, Alkuraya FS (2012) Molecular characterization of Joubert syndrome in Saudi Arabia. Hum Mutat 33:1423–1428. doi:10.1002/humu.22134

    CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Mohamed JY, Alkuraya HS, Verma IC, Puri RD, Alaiya AA, Rizzo WB, Alkuraya FS (2011) Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet 89:745–750. doi:10.1016/j.ajhg.2011.10.011

    CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Khan AO, Mohamed JY, Alghamdi MH, Alkuraya FS (2012a) Identification of a truncation mutation of acylglycerol kinase (AGK) gene in a novel autosomal recessive cataract locus. Hum Mutat 33:960–962. doi:10.1002/humu.22071

    CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Khan AO, Mohamed JY, Hijazi H, Al-Owain M, Alswaid A, Alkuraya FS (2012b) Genomic analysis of pediatric cataract in Saudi Arabia reveals novel candidate disease genes. Genet Med 14:955–962. doi:10.1038/gim.2012.86

    CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Mohammed JY, Al-Hazzaa S, Alkuraya FS (2012c) Homozygous null mutation in ODZ3 causes microphthalmia in humans. Genet Med 14:900–904. doi:10.1038/gim.2012.71

    CAS  PubMed  Google Scholar 

  • Aldahmesh M, Khan A, Hijazi H, Alkuraya F (2013) Mutations in ALDH1A3 cause microphthalmia. Clin Genet. doi:10.1111/cge.12184

    Google Scholar 

  • Al-Dosari MS, Al-Owain M, Tulbah M, Kurdi W, Adly N, Al-Hemidan A, Masoodi TA, Albash B, Alkuraya FS (2013) Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet 50:54–58. doi:10.1136/jmedgenet-2012-101294

    CAS  PubMed  Google Scholar 

  • Alkuraya FS (2010a) Autozygome decoded. Genet Med 12:765–771. doi:10.1097/GIM.0b013e3181fbfcc4

    PubMed  Google Scholar 

  • Alkuraya FS (2010b) Homozygosity mapping: one more tool in the clinical geneticist’s toolbox. Genet Med 12:236–239. doi:10.1097/GIM.0b013e3181ceb95d

    PubMed  Google Scholar 

  • Alkuraya FS (2012) Discovery of rare homozygous mutations from studies of consanguineous pedigrees. Curr Protoc Hum Genet. doi:10.1002/0471142905.hg0612s75 (Chapter 6: Unit6 12)

    PubMed  Google Scholar 

  • Alshammari MJ, Al-Otaibi L, Alkuraya FS (2012) Mutation in RAB33B, which encodes a regulator of retrograde Golgi transport, defines a second Dyggve–Melchior–Clausen locus. J Med Genet 49:455–461. doi:10.1136/jmedgenet-2011-100666

    CAS  PubMed  Google Scholar 

  • Anastasio N, Ben-Omran T, Teebi A, Ha KC, Lalonde E, Ali R, Almureikhi M, Der Kaloustian VM, Liu J, Rosenblatt DS, Majewski J, Jerome-Majewska LA (2010) Mutations in SCARF2 are responsible for Van Den Ende-Gupta syndrome. Am J Hum Genet 87:553–559. doi:10.1016/j.ajhg.2010.09.005

    CAS  PubMed  Google Scholar 

  • Andreasen C, Nielsen JB, Refsgaard L, Holst AG, Christensen AH, Andreasen L, Sajadieh A, Haunso S, Svendsen JH, Olesen MS (2013) New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur J Hum Genet. doi:10.1038/ejhg.2012.283

    PubMed  Google Scholar 

  • Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755

    CAS  PubMed  Google Scholar 

  • Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K (2011a) Exome sequencing identifies truncating mutations in human <i> SERPINF1 </i> in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371

    CAS  PubMed  Google Scholar 

  • Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011b) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371. doi:10.1016/j.ajhg.2011.01.015

    CAS  PubMed  Google Scholar 

  • Below JE, Earl DL, Shively KM, McMillin MJ, Smith JD, Turner EH, Stephan MJ, Al-Gazali LI, Hertecant JL, Chitayat D, Unger S, Cohn DH, Krakow D, Swanson JM, Faustman EM, Shendure J, Nickerson DA, Bamshad MJ (2013) Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia. Am J Hum Genet 92:137–143. doi:10.1016/j.ajhg.2012.11.011

    CAS  PubMed  Google Scholar 

  • Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D, Tuysuz B, Caglayan AO, Gokben S, Kaymakcalan H, Barak T, Bakircioglu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S, Dincer A, Johnson MH, Bronen RA, Kocer N, Per H, Mane S, Pamir MN, Yalcinkaya C, Kumandas S, Topcu M, Ozmen M, Sestan N, Lifton RP, State MW, Gunel M (2010) Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467:207–210. doi:10.1038/nature09327

    CAS  PubMed  Google Scholar 

  • Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A, Premkumar L, Puel A, Bacon CM, Rieux-Laucat F, Pang K, Britland A, Abel L, Cant A, Maher ER, Riedl SJ, Hambleton S, Casanova JL (2010) Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet 87:873–881. doi:10.1016/j.ajhg.2010.10.028

    CAS  PubMed  Google Scholar 

  • Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237. doi:10.1038/ng1090

    CAS  PubMed  Google Scholar 

  • Brooke MA, Longhurst HJ, Plagnol V, Kirkby NS, Mitchell JA, Ruschendorf F, Warner TD, Kelsell DP, Macdonald TT (2012) Cryptogenic multifocal ulcerating stenosing enteritis associated with homozygous deletion mutations in cytosolic phospholipase A2-alpha. Gut. doi:10.1136/gutjnl-2012-303581

    PubMed  Google Scholar 

  • Cabral RM, Kurban M, Wajid M, Shimomura Y, Petukhova L, Christiano AM (2012) Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome. Genomics 99:202–208. doi:10.1016/j.ygeno.2012.01.005

    CAS  PubMed  Google Scholar 

  • Caliskan M, Chong JX, Uricchio L, Anderson R, Chen P, Sougnez C, Garimella K, Gabriel SB, dePristo MA, Shakir K, Matern D, Das S, Waggoner D, Nicolae DL, Ober C (2011) Exome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13. Hum Mol Genet 20:1285–1289. doi:10.1093/hmg/ddq569

    CAS  PubMed  Google Scholar 

  • Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L, Vives L, O’Roak BJ, Sudmant PH, Shendure J, Abney M, Ober C, Eichler EE (2012) Estimating the human mutation rate using autozygosity in a founder population. Nat Genet 44:1277–1281. doi:10.1038/ng.2418

    CAS  PubMed  Google Scholar 

  • Carr IM, Bhaskar S, O’Sullivan J, Aldahmesh MA, Shamseldin HE, Markham AF, Bonthron DT, Black G, Alkuraya FS (2013) Autozygosity mapping with exome sequence data. Hum Mutat 34:50–56. doi:10.1002/humu.22220

    CAS  PubMed  Google Scholar 

  • Chahrour MH, Yu TW, Lim ET, Ataman B, Coulter ME, Hill RS, Stevens CR, Schubert CR, Greenberg ME, Gabriel SB, Walsh CA (2012) Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 8:e1002635. doi:10.1371/journal.pgen.1002635

    CAS  PubMed  Google Scholar 

  • Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Cluckey A, Gee HY, Ramaswami G, Hong CJ, Hamilton BA, Cervenka I, Ganji RS, Bryja V, Arts HH, van Reeuwijk J, Oud MM, Letteboer SJ, Roepman R, Husson H, Ibraghimov-Beskrovnaya O, Yasunaga T, Walz G, Eley L, Sayer JA, Schermer B, Liebau MC, Benzing T, Le Corre S, Drummond I, Janssen S, Allen SJ, Natarajan S, O’Toole JF, Attanasio M, Saunier S, Antignac C, Koenekoop RK, Ren H, Lopez I, Nayir A, Stoetzel C, Dollfus H, Massoudi R, Gleeson JG, Andreoli SP, Doherty DG, Lindstrad A, Golzio C, Katsanis N, Pape L, Abboud EB, Al-Rajhi AA, Lewis RA, Omran H, Lee EY, Wang S, Sekiguchi JM, Saunders R, Johnson CA, Garner E, Vanselow K, Andersen JS, Shlomai J, Nurnberg G, Nurnberg P, Levy S, Smogorzewska A, Otto EA, Hildebrandt F (2012) Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150:533–548. doi:10.1016/j.cell.2012.06.028

    CAS  PubMed  Google Scholar 

  • Chiang PW, Wang J, Chen Y, Fu Q, Zhong J, Yi X, Wu R, Gan H, Shi Y, Barnett C, Wheaton D, Day M, Sutherland J, Heon E, Weleber RG, Gabriel LA, Cong P, Chuang K, Ye S, Sallum JM, Qi M (2012) Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis. Nat Genet 44:972–974. doi:10.1038/ng.2370

    CAS  PubMed  Google Scholar 

  • Collins FS, McKusick VA (2001) Implications of the Human Genome Project for medical science. JAMA: J Am Med Assoc 285:540–544

    CAS  Google Scholar 

  • Coulombe PA, Hutton ME, Letai A, Hebert A, Paller AS, Fuchs E (1991) Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66:1301–1311

    CAS  PubMed  Google Scholar 

  • Davidson AE, Sergouniotis PI, Mackay DS, Wright GA, Waseem NH, Michaelides M, Holder GE, Robson AG, Moore AT, Plagnol V, Webster AR (2012) RP1L1 variants are associated with a spectrum of inherited retinal diseases including retinitis pigmentosa and occult macular dystrophy. Hum Mutat. doi:10.1002/humu.22264

    PubMed  Google Scholar 

  • de Greef JC, Wang J, Balog J, den Dunnen JT, Frants RR, Straasheijm KR, Aytekin C, van der Burg M, Duprez L, Ferster A, Gennery AR, Gimelli G, Reisli I, Schuetz C, Schulz A, Smeets DF, Sznajer Y, Wijmenga C, van Eggermond MC, van Ostaijen-Ten Dam MM, Lankester AC, van Tol MJ, van den Elsen PJ, Weemaes CM, van der Maarel SM (2011) Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet 88:796–804. doi:10.1016/j.ajhg.2011.04.018

    PubMed  Google Scholar 

  • de la Chapelle A (1993) Disease gene mapping in isolated human populations: the example of Finland. J Med Genet 30:857

    PubMed  Google Scholar 

  • Delmaghani S, Aghaie A, Michalski N, Bonnet C, Weil D, Petit C (2012) Defect in the gene encoding the EAR/EPTP domain-containing protein TSPEAR causes DFNB98 profound deafness. Hum Mol Genet 21:3835–3844. doi:10.1093/hmg/dds212

    CAS  PubMed  Google Scholar 

  • Dixon-Salazar TJ, Silhavy JL, Udpa N, Schroth J, Bielas S, Schaffer AE, Olvera J, Bafna V, Zaki MS, Abdel-Salam GH, Mansour LA, Selim L, Abdel-Hadi S, Marzouki N, Ben-Omran T, Al-Saana NA, Sonmez FM, Celep F, Azam M, Hill KJ, Collazo A, Fenstermaker AG, Novarino G, Akizu N, Garimella KV, Sougnez C, Russ C, Gabriel SB, Gleeson JG (2012) Exome sequencing can improve diagnosis and alter patient management. Sci Transl Med 4:138ra78. doi:10.1126/scitranslmed.3003544

    PubMed  Google Scholar 

  • Doherty D, Chudley AE, Coghlan G, Ishak GE, Innes AM, Lemire EG, Rogers RC, Mhanni AA, Phelps IG, Jones SJ, Zhan SH, Fejes AP, Shahin H, Kanaan M, Akay H, Tekin M, Triggs-Raine B, Zelinski T (2012) GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am J Hum Genet 90:1088–1093. doi:10.1016/j.ajhg.2012.04.008

    CAS  PubMed  Google Scholar 

  • Doi H, Yoshida K, Yasuda T, Fukuda M, Fukuda Y, Morita H, Ikeda S, Kato R, Tsurusaki Y, Miyake N, Saitsu H, Sakai H, Miyatake S, Shiina M, Nukina N, Koyano S, Tsuji S, Kuroiwa Y, Matsumoto N (2011) Exome sequencing reveals a homozygous SYT14 mutation in adult-onset, autosomal-recessive spinocerebellar ataxia with psychomotor retardation. Am J Hum Genet 89:320–327. doi:10.1016/j.ajhg.2011.07.012

    CAS  PubMed  Google Scholar 

  • Drielsma A, Jalas C, Simonis N, Desir J, Simanovsky N, Pirson I, Elpeleg O, Abramowicz M, Edvardson S (2012) Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J Med Genet 49:708–712. doi:10.1136/jmedgenet-2012-101190

    CAS  PubMed  Google Scholar 

  • Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, Dor T, Hannon GJ, Elpeleg O (2011) Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res 21:658–664. doi:10.1101/gr.117143.110

    CAS  PubMed  Google Scholar 

  • Fares-Taie L, Gerber S, Chassaing N, Clayton-Smith J, Hanein S, Silva E, Serey M, Serre V, Gerard X, Baumann C, Plessis G, Demeer B, Bretillon L, Bole C, Nitschke P, Munnich A, Lyonnet S, Calvas P, Kaplan J, Ragge N, Rozet JM (2013) ALDH1A3 mutations cause recessive anophthalmia and microphthalmia. Am J Hum Genet. doi:10.1016/j.ajhg.2012.12.003

    PubMed  Google Scholar 

  • Fernández-Cañón JM, Granadino B, De Bernabé DBV, Renedo M, Fernández-Ruiz E, Peñalva MA, De Córdoba SR (1996) The molecular basis of alkaptonuria. Nat Genet 14:19–24

    PubMed  Google Scholar 

  • Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 78:1011–1025. doi:10.1086/504300

    CAS  PubMed  Google Scholar 

  • Friedmann T (1990) The human genome project–some implications of extensive” reverse genetic” medicine. Am J Hum Genet 46:407

    CAS  PubMed  Google Scholar 

  • Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM, Handsaker RE, McCarroll SA, O’Donovan MC, Owen MJ, Kirov G, Sullivan PF, Hultman CM, Sklar P, Purcell SM (2012) Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am J Hum Genet 91:597–607. doi:10.1016/j.ajhg.2012.08.005

    CAS  PubMed  Google Scholar 

  • Garrod AE (1902) The incidence of alkaptonuria: a study in chemical individuality. Lancet 2:1616–1620

    CAS  Google Scholar 

  • Gilissen C, Hoischen A, Brunner HG, Veltman JA (2011) Unlocking Mendelian disease using exome sequencing. Genome Biol 12:228. doi:10.1186/gb-2011-12-9-228

    CAS  PubMed  Google Scholar 

  • Gilissen C, Hoischen A, Brunner HG, Veltman JA (2012) Disease gene identification strategies for exome sequencing. Eur J Hum Genet 20:490–497. doi:10.1038/ejhg.2011.258

    CAS  PubMed  Google Scholar 

  • Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, Picard C, Trouillet C, Eidenschenk C, Aoufouchi S, Alcais A, Smith O, Geissmann F, Feighery C, Abel L, Smogorzewska A, Stillman B, Vivier E, Casanova JL, Jouanguy E (2012) Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122:821–832. doi:10.1172/JCI61014

    CAS  PubMed  Google Scholar 

  • Green ED, Guyer MS (2011) Charting a course for genomic medicine from base pairs to bedside. Nature 470:204–213

    CAS  PubMed  Google Scholar 

  • Guergueltcheva V, Azmanov DN, Angelicheva D, Smith KR, Chamova T, Florez L, Bynevelt M, Nguyen T, Cherninkova S, Bojinova V, Kaprelyan A, Angelova L, Morar B, Chandler D, Kaneva R, Bahlo M, Tournev I, Kalaydjieva L (2012) Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. Am J Hum Genet 91:553–564. doi:10.1016/j.ajhg.2012.07.019

    CAS  PubMed  Google Scholar 

  • Horani A, Druley TE, Zariwala MA, Patel AC, Levinson BT, Van Arendonk LG, Thornton KC, Giacalone JC, Albee AJ, Wilson KS, Turner EH, Nickerson DA, Shendure J, Bayly PV, Leigh MW, Knowles MR, Brody SL, Dutcher SK, Ferkol TW (2012) Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet 91:685–693. doi:10.1016/j.ajhg.2012.08.022

    CAS  PubMed  Google Scholar 

  • Hughes CR, Guasti L, Meimaridou E, Chuang CH, Schimenti JC, King PJ, Costigan C, Clark AJ, Metherell LA (2012) MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest 122:814–820. doi:10.1172/JCI60224

    CAS  PubMed  Google Scholar 

  • Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, Alef T, Hennies HC, Technau M, Altmuller J, Frommolt P, Thiele H, Noegel AA, Nurnberg P (2012) A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet 90:871–878. doi:10.1016/j.ajhg.2012.03.016

    CAS  PubMed  Google Scholar 

  • Ionita-Laza I, Makarov V, Yoon S, Raby B, Buxbaum J, Nicolae DL, Lin X (2011) Finding disease variants in Mendelian disorders by using sequence data: methods and applications. Am J Hum Genet 89:701–712. doi:10.1016/j.ajhg.2011.11.003

    CAS  PubMed  Google Scholar 

  • Kalay E, Yigit G, Aslan Y, Brown KE, Pohl E, Bicknell LS, Kayserili H, Li Y, Tuysuz B, Nurnberg G, Kiess W, Koegl M, Baessmann I, Buruk K, Toraman B, Kayipmaz S, Kul S, Ikbal M, Turner DJ, Taylor MS, Aerts J, Scott C, Milstein K, Dollfus H, Wieczorek D, Brunner HG, Hurles M, Jackson AP, Rauch A, Nurnberg P, Karaguzel A, Wollnik B (2011) CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat Genet 43:23–26. doi:10.1038/ng.725

    CAS  PubMed  Google Scholar 

  • Kalsoom UE, Klopocki E, Wasif N, Tariq M, Khan S, Hecht J, Krawitz P, Mundlos S, Ahmad W (2013) Whole exome sequencing identified a novel zinc-finger gene ZNF141 associated with autosomal recessive postaxial polydactyly type A. J Med Genet 50:47–53. doi:10.1136/jmedgenet-2012-101219

    PubMed  Google Scholar 

  • Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A (2012) Rate of de novo mutations and the importance of father/’s age to disease risk. Nature 488:471–475

    CAS  PubMed  Google Scholar 

  • Krawitz PM, Schweiger MR, Rödelsperger C, Marcelis C, Kölsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S (2010a) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42:827–829

    CAS  PubMed  Google Scholar 

  • Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, Isau M, Fischer A, Dahl A, Kerick M, Hecht J, Kohler S, Jager M, Grunhagen J, de Condor BJ, Doelken S, Brunner HG, Meinecke P, Passarge E, Thompson MD, Cole DE, Horn D, Roscioli T, Mundlos S, Robinson PN (2010b) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42:827–829. doi:10.1038/ng.653

    CAS  PubMed  Google Scholar 

  • Ku CS, Naidoo N, Pawitan Y (2011) Revisiting Mendelian disorders through exome sequencing. Hum Genet 129:351–370. doi:10.1007/s00439-011-0964-2

    PubMed  Google Scholar 

  • Lander ES, Botstein D (1987) Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236:1567–1570

    CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Lise S, Clarkson Y, Perkins E, Kwasniewska A, Sadighi Akha E, Parolin Schnekenberg R, Suminaite D, Hope J, Baker I, Gregory L, Green A, Allan C, Lamble S, Jayawant S, Quaghebeur G, Cader MZ, Hughes S, Armstrong RJ, Kanapin A, Rimmer A, Lunter G, Mathieson I, Cazier JB, Buck D, Taylor JC, Bentley D, McVean G, Donnelly P, Knight SJ, Jackson M, Ragoussis J, Nemeth AH (2012) Recessive mutations in SPTBN2 implicate beta-III spectrin in both cognitive and motor development. PLoS Genet 8:e1003074. doi:10.1371/journal.pgen.1003074

    CAS  PubMed  Google Scholar 

  • MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:823–828. doi:10.1126/science.1215040

    CAS  PubMed  Google Scholar 

  • Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What can exome sequencing do for you? J Med Genet 48:580–589. doi:10.1136/jmedgenet-2011-100223

    CAS  PubMed  Google Scholar 

  • Manzini MC, Tambunan DE, Hill RS, Yu TW, Maynard TM, Heinzen EL, Shianna KV, Stevens CR, Partlow JN, Barry BJ, Rodriguez J, Gupta VA, Al-Qudah AK, Eyaid WM, Friedman JM, Salih MA, Clark R, Moroni I, Mora M, Beggs AH, Gabriel SB, Walsh CA (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 91:541–547. doi:10.1016/j.ajhg.2012.07.009

    CAS  PubMed  Google Scholar 

  • Markus B, Narkis G, Landau D, Birk RZ, Cohen I, Birk OS (2012) Autosomal recessive lethal congenital contractural syndrome type 4 (LCCS4) caused by a mutation in MYBPC1. Hum Mutat 33:1435–1438. doi:10.1002/humu.22122

    CAS  PubMed  Google Scholar 

  • Martinez FJ, Lee JH, Lee JE, Blanco S, Nickerson E, Gabriel S, Frye M, Al-Gazali L, Gleeson JG (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 49:380–385. doi:10.1136/jmedgenet-2011-100686

    CAS  PubMed  Google Scholar 

  • McMillin MJ, Below JE, Shively KM, Beck AE, Gildersleeve HI, Pinner J, Gogola GR, Hecht JT, Grange DK, Harris DJ, Earl DL, Jagadeesh S, Mehta SG, Robertson SP, Swanson JM, Faustman EM, Mefford HC, Shendure J, Nickerson DA, Bamshad MJ (2013) Mutations in ECEL1 cause distal arthrogryposis type 5D. Am J Hum Genet 92:150–156. doi:10.1016/j.ajhg.2012.11.014

    CAS  PubMed  Google Scholar 

  • Meimaridou E, Kowalczyk J, Guasti L, Hughes CR, Wagner F, Frommolt P, Nurnberg P, Mann NP, Banerjee R, Saka HN, Chapple JP, King PJ, Clark AJ, Metherell LA (2012) Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. Nat Genet 44:740–742. doi:10.1038/ng.2299

    CAS  PubMed  Google Scholar 

  • Metzker ML (2009) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    PubMed  Google Scholar 

  • Mitchell K, O’Sullivan J, Missero C, Blair E, Richardson R, Anderson B, Antonini D, Murray JC, Shanske AL, Schutte BC, Romano RA, Sinha S, Bhaskar SS, Black GC, Dixon J, Dixon MJ (2012) Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet 90:69–75. doi:10.1016/j.ajhg.2011.11.013

    CAS  PubMed  Google Scholar 

  • Mohamed JY, Faqeih E, Alsiddiky A, Alshammari MJ, Ibrahim NA, Alkuraya FS (2013) Mutations in MEOX1, encoding mesenchyme homeobox 1, cause Klippel-Feil anomaly. Am J Hum Genet 92:157–161. doi:10.1016/j.ajhg.2012.11.016

    CAS  PubMed  Google Scholar 

  • Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Puttmann L, Vahid LN, Jensen C, Moheb LA, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi SG, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi MJ, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss AW, Tzschach A, Kahrizi K, Ropers HH (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–63. doi:10.1038/nature10423

    CAS  PubMed  Google Scholar 

  • Nevo Y, Ben-Zeev B, Tabib A, Straussberg R, Anikster Y, Shorer Z, Fattal-Valevski A, Ta-Shma A, Aharoni S, Rabie M, Zenvirt S, Goldshmidt H, Fellig Y, Shaag A, Mevorach D, Elpeleg O (2013) CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy. Blood 121:129–135. doi:10.1182/blood-2012-07-441857

    CAS  PubMed  Google Scholar 

  • Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA (2009a) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35

    PubMed  Google Scholar 

  • Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009b) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276. doi:10.1038/nature08250

    CAS  PubMed  Google Scholar 

  • Ng SB, Nickerson DA, Bamshad MJ, Shendure J (2010) Massively parallel sequencing and rare disease. Hum Mol Genet 19:R119–R124. doi:10.1093/hmg/ddq390

    CAS  PubMed  Google Scholar 

  • O’Sullivan J, Bitu CC, Daly SB, Urquhart JE, Barron MJ, Bhaskar SS, Martelli-Junior H, dos Santos Neto PE, Mansilla MA, Murray JC, Coletta RD, Black GC, Dixon MJ (2011) Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am J Hum Genet 88:616–620. doi:10.1016/j.ajhg.2011.04.005

    PubMed  Google Scholar 

  • Ott J (1999) Analysis of human genetic linkage, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Otto EA, Hurd TW, Airik R, Chaki M, Zhou W, Stoetzel C, Patil SB, Levy S, Ghosh AK, Murga-Zamalloa CA, van Reeuwijk J, Letteboer SJ, Sang L, Giles RH, Liu Q, Coene KL, Estrada-Cuzcano A, Collin RW, McLaughlin HM, Held S, Kasanuki JM, Ramaswami G, Conte J, Lopez I, Washburn J, Macdonald J, Hu J, Yamashita Y, Maher ER, Guay-Woodford LM, Neumann HP, Obermuller N, Koenekoop RK, Bergmann C, Bei X, Lewis RA, Katsanis N, Lopes V, Williams DS, Lyons RH, Dang CV, Brito DA, Dias MB, Zhang X, Cavalcoli JD, Nurnberg G, Nurnberg P, Pierce EA, Jackson PK, Antignac C, Saunier S, Roepman R, Dollfus H, Khanna H, Hildebrandt F (2010) Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet 42:840–850. doi:10.1038/ng.662

    CAS  PubMed  Google Scholar 

  • Oz-Levi D, Ben-Zeev B, Ruzzo EK, Hitomi Y, Gelman A, Pelak K, Anikster Y, Reznik-Wolf H, Bar-Joseph I, Olender T, Alkelai A, Weiss M, Ben-Asher E, Ge D, Shianna KV, Elazar Z, Goldstein DB, Pras E, Lancet D (2012) Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 91:1065–1072. doi:10.1016/j.ajhg.2012.09.015

    CAS  PubMed  Google Scholar 

  • Petukhova L, Shimomura Y, Wajid M, Gorroochurn P, Hodge SE, Christiano AM (2009) The effect of inbreeding on the distribution of compound heterozygotes: a lesson from Lipase H mutations in autosomal recessive woolly hair/hypotrichosis. Hum Hered 68:117–130. doi:10.1159/000212504

    PubMed  Google Scholar 

  • Pippucci T, Benelli M, Magi A, Martelli PL, Magini P, Torricelli F, Casadio R, Seri M, Romeo G (2011) EX-HOM (EXome HOMozygosity): a proof of principle. Hum Hered 72:45–53. doi:10.1159/000330164

    PubMed  Google Scholar 

  • Rajadhyaksha AM, Elemento O, Puffenberger EG, Schierberl KC, Xiang JZ, Putorti ML, Berciano J, Poulin C, Brais B, Michaelides M, Weleber RG, Higgins JJ (2010) Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am J Hum Genet 87:643–654. doi:10.1016/j.ajhg.2010.10.013

    CAS  PubMed  Google Scholar 

  • Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, Shahzad M, Ahmed ZM, Riazuddin S, Khan SN, Friedman TB (2010) Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet 86:378–388. doi:10.1016/j.ajhg.2010.01.030

    CAS  PubMed  Google Scholar 

  • Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez–Hernandez V, Shamseldin H, Kenny J, Waters A, Jenkins D, Kaissi AA, Leal GF, Dallapiccola B, Carnevale F, Bitner-Glindzicz M, Lees M, Hennekam R, Stanier P, Burns AJ, Peeters H, Alkuraya FS, Beales PL (2011) Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet 43:197–203. doi:10.1038/ng.757

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Schossig A, Wolf NI, Fischer C, Fischer M, Stocker G, Pabinger S, Dander A, Steiner B, Tonz O, Kotzot D, Haberlandt E, Amberger A, Burwinkel B, Wimmer K, Fauth C, Grond-Ginsbach C, Koch MJ, Deichmann A, von Kalle C, Bartram CR, Kohlschutter A, Trajanoski Z, Zschocke J (2012) Mutations in ROGDI cause Kohlschutter-Tonz syndrome. Am J Hum Genet 90:701–707. doi:10.1016/j.ajhg.2012.02.012

    CAS  PubMed  Google Scholar 

  • Schuster SC (2007) Next-generation sequencing transforms today’s biology. Nature 200(8)

  • Shaheen R, Faqeih E, Sunker A, Morsy H, Al-Sheddi T, Shamseldin HE, Adly N, Hashem M, Alkuraya FS (2011) Recessive mutations in DOCK6, encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and Adams-Oliver syndrome. Am J Hum Genet 89:328–333. doi:10.1016/j.ajhg.2011.07.009

    CAS  PubMed  Google Scholar 

  • Shaheen R, Alazami AM, Alshammari MJ, Faqeih E, Alhashmi N, Mousa N, Alsinani A, Ansari S, Alzahrani F, Al-Owain M, Alzayed ZS, Alkuraya FS (2012a) Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J Med Genet 49:630–635. doi:10.1136/jmedgenet-2012-101142

    CAS  PubMed  Google Scholar 

  • Shaheen R, Faqeih E, Alshammari MJ, Swaid A, Al-Gazali L, Mardawi E, Ansari S, Sogaty S, Seidahmed MZ, Almotairi MI, Farra C, Kurdi W, Al-Rasheed S, Alkuraya FS (2012b) Genomic analysis of Meckel-Gruber syndrome in Arabs reveals marked genetic heterogeneity and novel candidate genes. Eur J Hum Genet. doi:10.1038/ejhg.2012.254

    PubMed  Google Scholar 

  • Shaheen R, Ansari S, Mardawi EA, Alshammari MJ, Alkuraya FS (2013) Mutations in TMEM231 cause Meckel-Gruber syndrome. J Med Genet 50:160–162. doi:10.1136/jmedgenet-2012-101431

    CAS  PubMed  Google Scholar 

  • Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS (2012a) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241. doi:10.1136/jmedgenet-2012-100836

    PubMed  Google Scholar 

  • Shamseldin HE, Elfaki M, Alkuraya FS (2012b) Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation. J Med Genet 49:184–186. doi:10.1136/jmedgenet-2011-100585

    CAS  PubMed  Google Scholar 

  • Shamseldin HE, Faden MA, Alashram W, Alkuraya FS (2012c) Identification of a novel DLX5 mutation in a family with autosomal recessive split hand and foot malformation. J Med Genet 49:16–20. doi:10.1136/jmedgenet-2011-100556

    PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    CAS  PubMed  Google Scholar 

  • Shimazaki H, Takiyama Y, Ishiura H, Sakai C, Matsushima Y, Hatakeyama H, Honda J, Sakoe K, Naoi T, Namekawa M, Fukuda Y, Takahashi Y, Goto J, Tsuji S, Goto Y, Nakano I (2012) A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J Med Genet 49:777–784. doi:10.1136/jmedgenet-2012-101212

    CAS  PubMed  Google Scholar 

  • Sirmaci A, Edwards YJ, Akay H, Tekin M (2012) Challenges in whole exome sequencing: an example from hereditary deafness. PLoS One 7:e32000. doi:10.1371/journal.pone.0032000

    CAS  PubMed  Google Scholar 

  • Smith KR, Dahl HH, Canafoglia L, Andermann E, Damiano J, Morbin M, Bruni AC, Giaccone G, Cossette P, Saftig P, Grotzinger J, Schwake M, Andermann F, Staropoli JF, Sims KB, Mole SE, Franceschetti S, Alexander NA, Cooper JD, Chapman HA, Carpenter S, Berkovic SF, Bahlo M (2013) Cathepsin F mutations cause type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. doi:10.1093/hmg/dds558

    Google Scholar 

  • Sobreira NLM, Cirulli ET, Avramopoulos D, Wohler E, Oswald GL, Stevens EL, Ge D, Shianna KV, Smith JP, Maia JM (2010) Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. PLoS Genet 6:e1000991

    PubMed  Google Scholar 

  • Sunker A, Alkuraya FS (2013) Identification of MRI1, encoding translation initiation factor eIF-2B subunit alpha/beta/delta-like protein, as a candidate locus for infantile epilepsy with severe cystic degeneration of the brain. Gene 512:450–452. doi:10.1016/j.gene.2012.10.063

    CAS  PubMed  Google Scholar 

  • Takata A, Kato M, Nakamura M, Yoshikawa T, Kanba S, Sano A, Kato T (2011) Exome sequencing identifies a novel missense variant in RRM2B associated with autosomal recessive progressive external ophthalmoplegia. Genome Biol 12:R92. doi:10.1186/gb-2011-12-9-r92

    CAS  PubMed  Google Scholar 

  • Theis JL, Sharpe KM, Matsumoto ME, Chai HS, Nair AA, Theis JD, de Andrade M, Wieben ED, Michels VV, Olson TM (2011) Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy. Circ Cardiovasc Genet 4:585–594. doi:10.1161/CIRCGENETICS.111.961052

    CAS  PubMed  Google Scholar 

  • Thomas S, Encha-Razavi F, Devisme L, Etchevers H, Bessieres-Grattagliano B, Goudefroye G, Elkhartoufi N, Pateau E, Ichkou A, Bonniere M, Marcorelle P, Parent P, Manouvrier S, Holder M, Laquerriere A, Loeuillet L, Roume J, Martinovic J, Mougou-Zerelli S, Gonzales M, Meyer V, Wessner M, Feysot CB, Nitschke P, Leticee N, Munnich A, Lyonnet S, Wookey P, Gyapay G, Foliguet B, Vekemans M, Attie-Bitach T (2010) High-throughput sequencing of a 4.1 Mb linkage interval reveals FLVCR2 deletions and mutations in lethal cerebral vasculopathy. Hum Mutat 31:1134–1141. doi:10.1002/humu.21329

    CAS  PubMed  Google Scholar 

  • Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, Abu Rayyan A, Loulus S, Avraham KB, King MC, Kanaan M (2010) Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet 87:90–94. doi:10.1016/j.ajhg.2010.05.010

    CAS  PubMed  Google Scholar 

  • Volpi L, Roversi G, Colombo EA, Leijsten N, Concolino D, Calabria A, Mencarelli MA, Fimiani M, Macciardi F, Pfundt R, Schoenmakers EF, Larizza L (2010) Targeted next-generation sequencing appoints c16orf57 as clericuzio-type poikiloderma with neutropenia gene. Am J Hum Genet 86:72–76. doi:10.1016/j.ajhg.2009.11.014

    CAS  PubMed  Google Scholar 

  • Zahrani F, Aldahmesh MA, Alshammari MJ, Al-Hazzaa SA, Alkuraya FS (2013) Mutations in c12orf57 cause a syndromic form of colobomatous microphthalmia. Am J Hum Genet 92:387–391. doi:10.1016/j.ajhg.2013.01.008

    CAS  PubMed  Google Scholar 

  • Zangen D, Kaufman Y, Zeligson S, Perlberg S, Fridman H, Kanaan M, Abdulhadi-Atwan M, Abu Libdeh A, Gussow A, Kisslov I, Carmel L, Renbaum P, Levy-Lahad E (2011) XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription. Am J Hum Genet 89:572–579. doi:10.1016/j.ajhg.2011.09.006

    CAS  PubMed  Google Scholar 

  • Zhou J, Tawk M, Tiziano FD, Veillet J, Bayes M, Nolent F, Garcia V, Servidei S, Bertini E, Castro-Giner F, Renda Y, Carpentier S, Andrieu-Abadie N, Gut I, Levade T, Topaloglu H, Melki J (2012a) Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am J Hum Genet 91:5–14. doi:10.1016/j.ajhg.2012.05.001

    CAS  PubMed  Google Scholar 

  • Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW, Chaki M, Diaz K, Lach FP, Bennett GR, Gee HY, Ghosh AK, Natarajan S, Thongthip S, Veturi U, Allen SJ, Janssen S, Ramaswami G, Dixon J, Burkhalter F, Spoendlin M, Moch H, Mihatsch MJ, Verine J, Reade R, Soliman H, Godin M, Kiss D, Monga G, Mazzucco G, Amann K, Artunc F, Newland RC, Wiech T, Zschiedrich S, Huber TB, Friedl A, Slaats GG, Joles JA, Goldschmeding R, Washburn J, Giles RH, Levy S, Smogorzewska A, Hildebrandt F (2012b) FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet 44:910–915. doi:10.1038/ng.2347

    CAS  PubMed  Google Scholar 

  • Zhuang Z, Gusev A, Cho J, Pe’er I (2012) Detecting identity by descent and homozygosity mapping in whole-exome sequencing data. PLoS One 7:e47618. doi:10.1371/journal.pone.0047618

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fowzan S. Alkuraya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkuraya, F.S. The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum Genet 132, 1197–1211 (2013). https://doi.org/10.1007/s00439-013-1344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1344-x

Keywords

Navigation