Skip to main content

Advertisement

Log in

Small Rho GTPases are important for acinus formation in a human salivary gland cell line

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Rho GTPases participate in a wide variety of signal transduction pathways regulating the actin cytoskeleton, gene expression, cellular migration and proliferation. The aim of this study was to evaluate the role of Rho GTPases in signal transduction pathways during acinus formation in a human salivary gland (HSG) cell line initiated by extracellular matrix (ECM; Matrigel) alone or in combination with epidermal growth factor, basic fibroblast growth factor and lysophosphatidic acid (LPA). Immunohistochemical and Western blotting analyses showed that HSG cells contained RhoA, RhoB, Rac1 and Cdc42 proteins. All growth factors enhanced the effects of ECM on acinus formation, in a pathway dependent on PI3-kinase and Rho GTPases. The role of ROCK, a major RhoA effector, seemed limited to cortical actin polymerization. LPA stimulated cell migration and acinus formation in a PI3-kinase-independent pathway. The results suggest that Rho proteins are important for epithelial-mesenchymal interactions during salivary gland development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311

    Article  PubMed  CAS  Google Scholar 

  • Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348:241–255

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Vlahos C, Wang Y, Knaus UG, Traynor-Kaplan AE (1996) Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem J 315:775–779

    PubMed  CAS  Google Scholar 

  • Bradford MA (1976) A rapid and sensitive method for the quantitation of microgram amounts of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  PubMed  CAS  Google Scholar 

  • Genot EM, Arrieumerlou C, Ku G, Burgering BMT, Weiss A, Kramer IM (2000) The T-cell receptor regulates Akt (protein kinase B) via a pathway involving Rac1 and phosphatidylinositide 3-kinase. Mol Cell Biol 20:5469–5478

    Article  PubMed  CAS  Google Scholar 

  • Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355:965–970

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PT, Eguinoa A, Qiu RG, Stokoe D, Cooke FT, Walters R, Wennstrom S, Claesson-Welsh L, Evans T, Symons M, et al (1995) PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr Biol 5:393–403

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu Y, Kagami H, Horie K, Okazaki Y, Shigetomi T, Hata K, Kobayashi S, Ueda M (2000) Effects of basic fibroblast growth factor on cultured rat and human submandibular salivary gland cells. Arch Oral Biol 45:593–599

    Article  PubMed  CAS  Google Scholar 

  • Hoffman MP, Kibbey MC, Letterio JJ, Kleinman HK (1996) Role of laminin-1 and TGF-β3 in acinar differentiation of a human submandibular gland cell line (HSG). J Cell Sci 109:2013–2021

    PubMed  CAS  Google Scholar 

  • Hoffman MP, Nomizu M, Roque E, Lee S, Jung DW, Yamada Y, Kleinman HK (1998) Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem 273:28633–28641

    Article  PubMed  CAS  Google Scholar 

  • Just I, Wilm M, Selzer J, Rex G, Eichel-Streiber C von, Mann M, Aktories K (1995) The enterotoxin from Clostridium difficile (Tox A) monoglucosylates the Rho proteins. J Biol Chem 270:13932–13936

    Article  PubMed  CAS  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  PubMed  CAS  Google Scholar 

  • Koyama N, Kashimata M, Sakashita H, Sakagami H, Gresik EW (2003) EGF-stimulated signaling by means of PI3K, PLCγ1, and PKC isozymes regulates branching morphogenesis of the fetal mouse submandibular gland. Dev Dyn 227:216–226

    Article  PubMed  CAS  Google Scholar 

  • Larsen M, Hoffman MP, Sakai T, Neibaur JC, Mitchell JM, Yamada KM (2003) Role of PI 3-kinase and PIP3 in submandibular gland branching morphogenesis. Dev Biol 255:178–191

    Article  PubMed  CAS  Google Scholar 

  • Menko AS, Kreidberg JA, Ryan TT, Van Bockstaele E, Kukuruzinska MA (2001) Loss of alpha3beta1 integrin function results in an altered differentiation program in the mouse submandibular gland. Dev Dyn 220:337–349

    Article  PubMed  CAS  Google Scholar 

  • Menko AS, Zhang L, Schiano F, Kreidberg JA, Kukuruzinska MA (2002) Regulation of cadherin junctions during mouse submandibular gland development. Dev Dyn 224:321–333

    Article  PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH (2004) G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92:949–966

    Article  PubMed  CAS  Google Scholar 

  • Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ (2001a) Rho GTPases and cell migration. J Cell Sci 114:2713–2722

    PubMed  CAS  Google Scholar 

  • Ridley AJ (2001b) Rho proteins, PI 3-kinase, and monocyte/macrophage motility. FEBS Lett 498:168–171

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  • Royce LS, Kibbey MC, Mertz P, Kleinman HK, Baum BJ (1993) Human neoplastic submandibular intercalated duct cells express an acinar phenotype when cultured on a basement membrane matrix. Differentiation 52:247–255

    Article  PubMed  CAS  Google Scholar 

  • Santos MF, McCormack SA, Guo Z, Okolicany J, Johnson LR, Tigyi G (1997) Rho proteins play a critical role in cell migration during the early phase of mucosal restitution. J Clin Invest 100:216–225

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Kyakumoto S, Sawano K, Ota M (1996) Proliferative signal transduction by epidermal growth factor (EGF) in the human salivary gland adenocarcinoma (HSG) cell line. Biochem Mol Biol Int 38:597–606

    PubMed  CAS  Google Scholar 

  • Schmitz AAP, Govek E, Bottner B, Van Aelst L (2000) Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261:1–12

    Article  PubMed  CAS  Google Scholar 

  • Schwartz-Arad D, Arber L, Arber N, Zajicek G, Michaeli Y (1988) The rat parotid gland—a renewing cell population. J Anat 161:143–151

    PubMed  CAS  Google Scholar 

  • Shirasuna K, Sato M, Miyazaki T (1981) A neoplastic epithelial duct cell line established from an irradiated human salivary gland. Cancer 48:745–752

    Article  PubMed  CAS  Google Scholar 

  • Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, Larsen M, Hoffman MP (2005) FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development 132:1223–1234

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH (1992) Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202:1–8

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Hoffman MP, McMillan T, Kleinman HK, O’Connell BC (1998) Growth factor regulation of the amylase promoter in a differentiating salivary acinar cell line. J Cell Physiol 177:628–635

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marley Januário da Silva and Leandro Mantovani de Castro for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinilce F. Santos.

Additional information

This work was supported by FAPESP (grant numbers: 97/09507-6, 01/09047-2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crema, V.O., Hamassaki, D.E. & Santos, M.F. Small Rho GTPases are important for acinus formation in a human salivary gland cell line. Cell Tissue Res 325, 493–500 (2006). https://doi.org/10.1007/s00441-006-0192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0192-6

Keywords

Navigation