Skip to main content

Advertisement

Log in

Continuous delivery of a monoclonal antibody against Reissner’s fiber into CSF reveals CSF-soluble material immunorelated to the subcommissural organ in early chick embryos

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The subcommissural organ (SCO) is an ependymal differentiation located in the dorsal midline of the caudal diencephalon under the posterior commissure. SCO cells synthesize and release glycoproteins into the cerebrospinal fluid (CSF) forming a threadlike structure known as Reissner’s fiber (RF), which runs caudally along the ventricular cavities and the central canal of the spinal cord. Numerous monoclonal antibodies have been raised against bovine RF and the secretory material of the SCO. For this study, we selected the 4F7 monoclonal antibody based on its cross-reactivity with chick embryo SCO glycoproteins in vivo. E4 chick embryos were injected with 4F7 hybridoma cells or with the purified monoclonal antibody into the ventricular cavity of the optic tectum. The hybridoma cells survived, synthesized and released antibody into the CSF for at least 13 days after the injection. E5 embryos injected with 4F7 antibody displayed precipitates in the CSF comprising both the monoclonal antibody and anti-RF-positive material. Such aggregates were never observed in control embryos injected with other monoclonal antibodies used as controls. Western blot analysis of CSF from E4-E6 embryos revealed several immunoreactive bands to anti-RF (AFRU) antibody. We also found AFRU-positive material bound to the apical surface of the choroid plexus primordia in E5 embryos. These and other ultrastructural evidence suggest the existence of soluble SCO-related molecules in the CSF of early chick embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ando T, Davies TF (2005) Monoclonal antibodies to the thyrotropin receptor. Clin Dev Immunol 12:137–143

    Article  PubMed  CAS  Google Scholar 

  • Brio MA del, Riera P, Munoz RI, Montecinos H, Rodriguez EM (2000) The metencephalic floor plate of chick embryos expresses two secretory glycoproteins homologous with the two glycoproteins secreted by the subcommissural organ. Histochem Cell Biol 113:415–426

    PubMed  Google Scholar 

  • Brio MA del, Riera P, Peruzzo B, Rodriguez EM (2001) Hindbrain floor plate of the rat: ultrastructural changes occurring during development. Microsc Res Tech 52:615–626

    Article  PubMed  Google Scholar 

  • Castaneyra-Perdomo A, Meyer G, Ferres-Torres R (1983) Development of the subcommissural organ in the albino mouse (a Golgi study). J Hirnforsch 24:363–370

    PubMed  CAS  Google Scholar 

  • Chen IL, Lu KS, Lin HS (1973) Electron microscopic and cytochemical studies of the mouse subcommissural organ. Z Zellforsch Mikrosk Anat 139:217–236

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes M, Rodriguez S, Perez J, Grondona JM, Rodriguez EM, Fernandez-Llebrez P (1994) Decreased cerebrospinal fluid flow through the central canal of the spinal cord of rats immunologically deprived of Reissner’s fibre. Exp Brain Res 98:431–440

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes M, Lopez-Avalos MD, Perez J, Grondona JM, Fernandez-Llebrez P (1996) Identification of a high molecular weight polypeptide in the subcommissural organ of the chick embryo. Cell Tissue Res 286:543–546

    Article  PubMed  CAS  Google Scholar 

  • Creveaux I, Gobron S, Meiniel R, Dastugue B, Meiniel A (1998) Complex expression pattern of the SCO-spondin gene in the bovine subcommissural organ: toward an explanation for Reissner’s fiber complexity? Brain Res Mol Brain Res 55:45–53

    Article  PubMed  CAS  Google Scholar 

  • Crowe JE Jr, Suara RO, Brock S, Kallewaard N, House F, Weitkamp JH (2001) Genetic and structural determinants of virus neutralizing antibodies. Immunol Res 23:135–145

    Article  PubMed  CAS  Google Scholar 

  • Didier R, Dastugue B, Meiniel A (1995) The secretory material of the subcommissural organ of the chick embryo. Characterization of a specific polypeptide by two-dimensional electrophoresis. Int J Dev Biol 39:493–499

    PubMed  CAS  Google Scholar 

  • Dziegielewska KM, Saunders NR (2002) The ins and outs of brain-barrier mechanisms. Trends Neurosci 25:69–71

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Llebrez P, Hernandez S, Andrades JA (2001a) Immunocytochemical detection of Reissner’s fiber-like glycoproteins in the subcommissural organ and the floor plate of wildtype and cyclops mutant zebrafish larvae. Cell Tissue Res 305:115–120

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Llebrez P, Miranda E, Estivill-Torrus G, Cifuentes M, Grondona JM, Lopez-Avalos MD, Perez-Martin M, Perez J (2001b) Analysis and quantification of the secretory products of the subcommissural organ by use of monoclonal antibodies. Microsc Res Tech 52:510–519

    Article  PubMed  CAS  Google Scholar 

  • Fouad K, Klusman I, Schwab ME (2004) Regenerating corticospinal fibers in the marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the anti-Nogo-A antibody IN-1. Eur J Neurosci 20:2479–2482

    Article  PubMed  CAS  Google Scholar 

  • Gobron S, Monnerie H, Meiniel R, Creveaux I, Lehmann W, Lamalle D, Dastugue B, Meiniel A (1996) SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation. J Cell Sci 109:1053–1061

    PubMed  CAS  Google Scholar 

  • Gobron S, Creveaux I, Meiniel R, Didier R, Dastugue B, Meiniel A (1999) SCO spondin is evolutionarily conserved in the central nervous system of the chordate phylum. Neuroscience 88:655–664

    Article  PubMed  CAS  Google Scholar 

  • Grondona JM, Perez J, Cifuentes M, Lopez-Avalos MD, Nualart FJ, Peruzzo B, Fernandez LP, Rodriguez EM (1994) Analysis of the secretory glycoproteins of the subcommissural organ of the dogfish (Scyliorhinus canicula). Brain Res Mol Brain Res 26:299–308

    Article  PubMed  CAS  Google Scholar 

  • Guiñazú MF, Richter HG, Rodriguez EM (2002) Bovine floor plate explants secrete SCO-spondin. Cell Tissue Res 308:177–191

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–91

    Article  Google Scholar 

  • Hauser R (1972) Morphogenetic action of the subcommissural organ on tail regeneration in Xenopus larvae. Wilhelm Roux Archiv 169:70–184

    Article  Google Scholar 

  • Hauser R (1976) Distortion of body axis in young minnows (Phoxinus laevis) following destruction of the subcommissural organ. Rev Suisse Zool 83:898–903

    PubMed  CAS  Google Scholar 

  • Hein S, Nualart F, Rodriguez EM, Oksche A (1993) Partial characterization of the secretory products of the subcommissural organ. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 79–88

    Google Scholar 

  • Hoyo-Becerra C, Lopez-Avalos MD, Alcaide-Gavilan M, Gomez-Roldan MC, Perez J, Fernandez-Llebrez P, Grondona JM (2005) Reissner’s fiber formation depends on developmentally regulated factors extrinsic to the subcommissural organ. Cell Tissue Res 321:429–441

    Article  PubMed  CAS  Google Scholar 

  • Irigoin C, Rodriguez EM, Heinrichs M, Frese K, Herzog S, Oksche A, Rott R (1990) Immunocytochemical study of the subcommissural organ of rats with induced postnatal hydrocephalus. Exp Brain Res 82:384–392

    Article  PubMed  CAS  Google Scholar 

  • Karoumi A, Croisille Y, Croisille F, Meiniel R, Belin MF, Meiniel A (1990) Glycoprotein synthesis in the subcommissural organ of the chick embryo. II. An immunochemical study. J Neural Transm Gen Sect 80:203–212

    Article  PubMed  CAS  Google Scholar 

  • Kimble JE, Mollgard K (1975) Subcommissural organ-associated neurons in fetal and neonatal rabbit. Cell Tissue Res 159:195–204

    Article  PubMed  CAS  Google Scholar 

  • Lehmann W, Sterba G (1993) The subcommissural organ in vitro. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 133–140

    Google Scholar 

  • Leonhardt H (1980) Ependym und circumventrikuläre Organe. In: Oksche A, Vollrath L (eds) Handbuch der Mikroskopischen Anatomie des Menschen, Part IV, vol 10. Neuroglia I. Springer, Berlin Heidelberg New York, pp 176–665

    Google Scholar 

  • Lichtenfeld J, Viehweg J, Schutzenmeister J, Naumann WW (1999) Reissner’s substance expressed as a transient pattern in vertebrate floor plate. Anat Embryol (Berl) 200:161–174

    Article  CAS  Google Scholar 

  • Lopez-Avalos MD, Cifuentes M, Grondona JM, Miranda E, Perez J, Fernandez-Llebrez P (1997) Rostral floor plate (flexural organ) secretes glycoproteins immunologically similar to subcommissural organ glycoproteins in dogfish (Scyliorhinus canicula) embryos. Brain Res Dev Brain Res 102:69–75

    Article  PubMed  CAS  Google Scholar 

  • Marcinkiewicz M, Bouchaud C (1983) The ependymal secretion of the fetal and adult rat subcommissural organ. Morphological aspects linked to the synthesis, storage and release of the secretory products. Biol Cell 48:47–52

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz M, Bouchaud C (1986) Formation and maturation of axo-glandular synapses and concomitant changes in the target cells of the rat subcommissural organ. Biol Cell 56:57–65

    PubMed  CAS  Google Scholar 

  • Meiniel A (2001) SCO-spondin, a glycoprotein of the subcommissural organ/Reissner’s fiber complex: evidence of a potent activity on neuronal development in primary cell cultures. Microsc Res Tech 52:484–495

    Article  PubMed  CAS  Google Scholar 

  • Meiniel A, Meiniel R, Goncalves-Mendes N, Creveaux I, Didier R, Dastugue B (2003) The thrombospondin type 1 repeat (TSR) and neuronal differentiation: roles of SCO-spondin oligopeptides on neuronal cell types and cell lines. Int Rev Cytol 230:1–39

    PubMed  CAS  Google Scholar 

  • Meiniel R, Didier R, Molat JL, Meiniel A (1993) Developmental aspects of the subcommissural organ: an approach using lectins and monoclonal antibodies. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 51–59

    Google Scholar 

  • Miranda E, Almonacid JA, Rodriguez S, Perez J, Hein S, Cifuentes M, Fernandez-Llebrez P, Rodriguez EM (2001) Searching for specific binding sites of the secretory glycoproteins of the subcommissural organ. Microsc Res Tech 52:541–551

    Article  PubMed  CAS  Google Scholar 

  • Molnar M, Ruberti F, Cozzari C, Domenici L, Cattaneo A (1997) A critical period in the sensitivity of basal forebrain cholinergic neurones to NGF deprivation. Neuroreport 8:575–579

    PubMed  CAS  Google Scholar 

  • Mollgard K (1972) Histochemical investigations on the human foetal subcommissural organ. I. Carbohydrates and mucosubstances, proteins and nucleoproteins, esterase, acid and alkaline phosphatase. Histochemie 32:31–48

    PubMed  CAS  Google Scholar 

  • Monnerie H, Boespflug-Tanguy O, Dastugue B, Meiniel A (1995) Reissner’s fibre supports the survival of chick cortical neurons in primary mixed cultures. Cell Tissue Res 282:1–91

    Article  Google Scholar 

  • Monnerie H, Boespflug-Tanguy O, Dastugue B, Meiniel A (1996) Soluble material from Reissner’s fiber displays anti-aggregative activity in primary cultures of chick cortical neurons. Brain Res Dev Brain Res 96:120–129

    Article  PubMed  CAS  Google Scholar 

  • Monnerie H, Dastugue B, Meiniel A (1997) In vitro differentiation of chick spinal cord neurons in the presence of Reissner’s fibre, an ependymal brain secretion. Brain Res Dev Brain Res 102:167–176

    Article  PubMed  CAS  Google Scholar 

  • Monnerie H, Dastugue B, Meiniel A (1998) Effect of synthetic peptides derived from SCO-spondin conserved domains on chick cortical and spinal-cord neurons in cell cultures. Cell Tissue Res 293:407–418

    Article  PubMed  CAS  Google Scholar 

  • Naumann W (1986) Immunhistochemische Untersuchungen zur Ontogenese des Subcommissuralorgans. Acta Histochem Suppl 33:265–272

    PubMed  CAS  Google Scholar 

  • Naumann W, Muller G, Kloss P (1987) Immunoreactive glycoproteins of the subcommissural organ in the embryonic stages of the vertebrate brain. Wiss Z Karl-Marx-Univ Leipzig Math-Naturwiss R 36:17–20

    Google Scholar 

  • Nualart F, Hein S (2001) Biosynthesis and molecular biology of the secretory proteins of the subcommissural organ. Microsc Res Tech 52:468–483

    Article  PubMed  CAS  Google Scholar 

  • Oksche A (1956) Funktionelle histologische Untersuchungen über die Organe des Zwischenhirndaches der Chordaten. Anat Anz 102:404–419

    PubMed  CAS  Google Scholar 

  • Oksche A (1961) Vergleichende Untersuchungen über die sekretorische Aktivität der Subkommissuralorgans und den Gliacharakter seiner Zellen. Z Zellforsch Mikrosk Anat 54:549–612

    Article  PubMed  CAS  Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neurovisc Relat Suppl 9:111–139

    Google Scholar 

  • Olsson R (1956) The development of Reissner’s fibre in the brain of the salmon. Acta Zool 37:1–16

    Google Scholar 

  • Olsson R (1958) Studies on the subcommissural organ. Acta Zool 39:71–102

    CAS  Google Scholar 

  • Olsson R (1961) Subcommissural ependyma and pineal organ development in human fetuses. Gen Comp Endocrinol 1:117–123

    Article  PubMed  CAS  Google Scholar 

  • Orgiazzi J, Madec AM, Ducottet X (2003) The role of stimulating, function-blocking and growth-blocking anti-TSH receptor antibodies (TRAbs) in GD, Hashimoto’s disease and in atrophic thyroiditis. Ann Endocrinol (Paris) 64:31–36

    CAS  Google Scholar 

  • Oudega M, Rosano C, Sadi D, Wood PM, Schwab ME, Hagg T (2000) Neutralizing antibodies against neurite growth inhibitor NI-35/250 do not promote regeneration of sensory axons in the adult rat spinal cord. Neuroscience 100:873–883

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Grondona JM, Cifuentes M, Nualart FJ, Fernández-Llebrez P, Rodriguez EM (1993) Immunochemical analysis of the dogfish subcommissural organ.In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 99–107

    Google Scholar 

  • Perez J, Peruzzo B, Estivill-Torrus G, Cifuentes M, Schoebitz K, Rodriguez E, Fernandez-Llebrez P (1995) Light- and electron-microscopic immunocytochemical investigation of the subcommissural organ using a set of monoclonal antibodies against the bovine Reissner’s fiber. Histochem Cell Biol 104:221–232

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Garrido O, Cifuentes M, Alonso FJ, Estivill-Torrus G, Eller G, Nualart F, Lopez-Avalos MD, Fernandez-Llebrez P, Rodriguez EM (1996) Bovine Reissner’s fiber (RF) and the central canal of the spinal cord: an immunocytochemical study using a set of monoclonal antibodies against the RF-glycoproteins. Cell Tissue Res 286:33–42

    Article  PubMed  CAS  Google Scholar 

  • Richter HG, Munoz RI, Millan CS, Guinazu MF, Yulis CR, Rodriguez EM (2001) The floor plate cells from bovine express the mRNA encoding for SCO-spondin and its translation products. Brain Res Mol Brain Res 93:137–147

    Article  PubMed  CAS  Google Scholar 

  • Robert C, Soria JC, Spatz A, Le Cesne A, Malka D, Pautier P, Wechsler J, Lhomme C, Escudier B, Boige V, Armand JP, Le Chevalier T (2005) Cutaneous side-effects of kinase inhibitors and blocking antibodies. Lancet Oncol 6:491–500

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM (1970) Ependymal specializations. II. Ultrastructural aspects of the apical secretion of the toad subcommissural organ. Z Zellforsch Mikrosk Anat 111:15–31

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Oksche A, Hein S, Rodriguez S, Yulis R (1984) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237:427–441

    PubMed  CAS  Google Scholar 

  • Rodriguez EM, Rodriguez S, Schoebitz K, Yulis CR, Hoffmann P, Manns V, Oksche A (1989) Light- and electron-microscopic investigation of the rat subcommissural organ grafted under the kidney capsule, with particular reference to immunocytochemistry and lectin histochemistry. Cell Tissue Res 258:499–514

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Oksche A, Hein S, Yulis CR (1992) Cell biology of the subcommissural organ. Int Rev Cytol 135:39–121

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Jara P, Richter H, Montecinos H, Flandez B, Wiegand R, Oksche A (1993) Evidence for the release of CSF-soluble secretory material from the subcommissural organ, with particular reference to the situation in the human. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 121–131

    Google Scholar 

  • Rodriguez EM, Brio Leon MA del, Riera P, Menendez J, Schoebitz K (1996) The floor plate of the hindbrain is a highly specialized gland. Immunocytochemical and ultrastructural characteristics. Brain Res Dev Brain Res 97:153–168

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Rodriguez S, Hein S (1998) The subcommissural organ. Microsc Res Tech 41:98–123

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Oksche A, Montecinos H (2001) Human subcommissural organ, with particular emphasis on its secretory activity during the fetal life. Microsc Res Tech 52:573–590

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez S, Caprile T (2001) Functional aspects of the subcommissural organ-Reissner’s fiber complex with emphasis in the clearance of brain monoamines. Microsc Res Tech 52:564–572

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez S, Rodriguez EM, Jara P, Peruzzo B, Oksche A (1990) Single injection into the cerebrospinal fluid of antibodies against the secretory material of the subcommissural organ reversibly blocks formation of Reissner’s fiber: immunocytochemical investigations in the rat. Exp Brain Res 81:113–124

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez S, Vio K, Wagner C, Barria M, Navarrete EH, Ramirez VD, Perez-Figares JM, Rodriguez EM (1999) Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner’s fiber complex by maternal delivery of antibodies. Exp Brain Res 128:278–290

    Article  PubMed  CAS  Google Scholar 

  • Rühle HJ (1971) Anomalien im Wachstum der Achsenorgane nach experimenteller Ausschaltung des Komplexes Subcommissuralorgan-Reissnerscher Faden. Untersuchungen am Rippenmolch (Pleurodeles waltii). Acta Zool 52:23–68

    Article  Google Scholar 

  • Sargent PE (1900) Reissner`s fibre in the canalis centralis of vertebrates. Anat Anz 17:33–44

    Google Scholar 

  • Saunders NR (1992) Ontogenetic development of brain barrier mechanism. In: Bradbury MWB (ed) Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 327–369

    Google Scholar 

  • Saunders NR, Knott GW, Dziegielewska KM (2000) Barriers in the immature brain. Cell Mol Neurobiol 20:29–40

    Article  PubMed  CAS  Google Scholar 

  • Schoebitz K, Garrido O, Heinrichs M, Speer L, Rodriguez EM (1986) Ontogenical development of the chick and duck subcommissural organ. An immunocytochemical study. Histochemistry 84:1–40

    Article  Google Scholar 

  • Schoebitz K, Rodriguez EM, Garrido O, del Brio MA (1993) Ontogenetic development of the subcommissural organ with reference to the flexural organ. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 41–49

    Google Scholar 

  • Schoebitz K, Gonzalez C, Peruzzo B, Yulis CR, Rodriguez EM (2001) Organ culture of the bovine subcommissural organ: evidence for synthesis and release of the secretory material. Microsc Res Tech 52:496–509

    Article  Google Scholar 

  • Sterba G, Ermisch A, Freyer K, Hartmann G (1967) Incorporation of sulphur-35 into the subcommissural organ and Reissner’s fibre. Nature 216:504

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA, Hardy PH, Jr., Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    PubMed  CAS  Google Scholar 

  • Vio K, Rodriguez S, Navarrete EH, Perez-Figares JM, Jimenez AJ, Rodriguez EM (2000) Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner’s fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res 135:41–52

    Article  PubMed  CAS  Google Scholar 

  • Wenk CA, Thallmair M, Kartje GL, Schwab ME (1999) Increased corticofugal plasticity after unilateral cortical lesions combined with neutralization of the IN-1 antigen in adult rats. J Comp Neurol 410:143–157

    Article  PubMed  CAS  Google Scholar 

  • Wingstrand KG (1953) Neurosecretion and antidiuretic activity in chick embryos with remarks on the subcommissural organ. Arkh Zool (Stockholm) 6:41–67

    Google Scholar 

  • Winkelmann E (1960) Experimental studies on the regeneration of the spinal cord of Amblystoma mexicanum after extirpation of a small section. Z Mikrosk Anat Forsch 66:147–176

    PubMed  CAS  Google Scholar 

  • Wislocki GB, Roth WD (1958) Selective staining of the human subcommissural organ. Anat Rec 130:125–133

    Article  PubMed  CAS  Google Scholar 

  • Yulis CR, Munoz RI (2001) Vertebrate floor plate transiently expresses a compound recognized by antisera raised against subcommissural organ secretion. Microsc Res Tech 52:608–614

    Article  PubMed  CAS  Google Scholar 

  • Yulis CR, Mota MD, Andrades JA, Rodriguez S, Peruzzo B, Mancera JM, Ramirez P, Garrido M, Perez-Figarez JM, Fernandez-Llebrez P, Rodriguez EM (1998) Floor plate and the subcommissural organ are the source of secretory compounds of related nature: comparative immunocytochemical study. J Comp Neurol 392:19–34

    Article  PubMed  CAS  Google Scholar 

  • Ziyadeh FN, Sharma K (1996) The use of neutralizing antibodies to demonstrate the role of transforming growth factor-beta and Amadori-glycated albumin as mediators of experimental diabetic kidney disease. Contrib Nephrol 118:188–194

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. de la Rosa (Centro de Investigaciones Biológicas, CSIC, Madrid, Spain) for providing rabbit polyclonal antibody against Ng-CAM, José Esteban Casares Mira and Pedro Jiménez Palomo for valuable technical assistance, David Navas Fernández for technical assistance in the confocal microscopy study and Gregorio Martín Caballero for technical assistance with transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Grondona.

Additional information

C. Hoyo-Becerra and M.D. López-Ávalos contributed equally to this study and should be considered as first authors.

C. Hoyo-Becerra was the recipient of a predoctoral fellowship (PFPI) from the Ministerio de Educacion y Cultura (Spain). This work was supported by grants from DGICYT (BFI2003-03348; Spain) and FIS (01/0948; Spain), FIS (01-0948, PI021517; Spain) and ISCIII (red CIEN, nodo Fundación Carlos Haya).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyo-Becerra, C., López-Ávalos, M.D., Pérez, J. et al. Continuous delivery of a monoclonal antibody against Reissner’s fiber into CSF reveals CSF-soluble material immunorelated to the subcommissural organ in early chick embryos. Cell Tissue Res 326, 771–786 (2006). https://doi.org/10.1007/s00441-006-0231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0231-3

Keywords

Navigation