Skip to main content

Advertisement

Log in

Local lymphogenic migration pathway in normal mouse spleen

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although the immunological and hemodynamical significance of the spleen is of great importance, few reports detail the lymphatic vessels in this organ. We have used an immunohistochemical three-dimensional imaging technique to characterize lymphatic vessels in the normal mouse spleen and have successfully demonstrated their spatial relationship to the blood vascular system for the first time. Lymphatic markers, such as LYVE-1, VEGFR-3, and podoplanin, show different staining patterns depending on their location in the spleen. LYVE-1-positive lymphatic vessels run reverse to the arterial blood flow along the central arteries in the white pulp and trabecular arteries and exit the spleen from the hilum. These lymphatic vessels are surrounded by type IV collagen, indicating that they are collecting lymphatic vessels rather than lymphatic capillaries. Podoplanin is expressed not only in lymphatic vessels, but also in stromal cells in the white pulp. These podoplanin-positive cells form fine meshworks surrounding the lymphatic vessels and central arteries. Following intravenous transplantation of lymphocytes positive for green fluorescent protein (GFP+) into normal recipient mice, donor cells appear in the meshworks within 1 h and accumulate in the lymphatic vessels within 6 h after injection. The GFP+ cells further accumulate in a draining celiac lymph node through the efferent lymphatic vessels from the hilum. These meshworks might therefore act as an extravascular lymphatic pathway and, together with ordinary lymphatic vessels, play a primary role in the cell traffic of the spleen, additional to the blood circulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801

    Article  CAS  PubMed  Google Scholar 

  • Barcroft J, Florey HW (1928) Some factors involved in the concentration of blood by the spleen. J Physiol (Lond) 66:231–234

    CAS  Google Scholar 

  • Bekiaris V, Withers D, Glanville SH, McConnell FM, Parnell SM, Kim MY, Gaspal FM, Jenkinson E, Sweet C, Anderson G, Lane PJ (2007) Role of CD30 in B/T segregation in the spleen. J Immunol 179:7535–7543

    CAS  PubMed  Google Scholar 

  • Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394

    CAS  PubMed  Google Scholar 

  • Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34:455–465

    Article  PubMed  Google Scholar 

  • Dubreuil AE, Herman PG, Tilney NL, Mellins HZ (1975) Microangiography of the white pulp of the spleen. Am J Roentgenol Radium Ther Nucl Med 123:427–432

    CAS  PubMed  Google Scholar 

  • Eikelenboom P, Boorsma DM, Rooijen N van (1982) The development of IgM- and IgG-containing plasmablasts in the white pulp of the spleen after stimulation with a thymus-independent antigen (LPS) and a thymus-dependent antigen (SRBC). Cell Tissue Res 226:83–95

    Article  CAS  PubMed  Google Scholar 

  • Ewijk W van, Rozing J, Brons NH, Klepper D (1977) Cellular events during the primary immune response in the spleen. A fluorescence- light- and electron microscopic study in germfree mice. Cell Tissue Res 183:471–489

    Article  PubMed  Google Scholar 

  • Ezaki T, Matsuno K, Fujii H, Hayashi N, Miyakawa K, Ohmori J, Kotani M (1990) A new approach for identification of rat lymphatic capillaries using a monoclonal antibody. Arch Histol Cytol 53 (Suppl):77–86

    Article  PubMed  Google Scholar 

  • Ezaki T, Kuwahara K, Morikawa S, Shimizu K, Sakaguchi N, Matsushima K, Matsuno K (2006) Production of two novel monoclonal antibodies that distinguish mouse lymphatic and blood vascular endothelial cells. Anat Embryol (Berl) 211:379–393

    Article  CAS  Google Scholar 

  • Fraley EE, Weiss L (1961) An electron microscopic study of the lymphatic vessels in the penile skin of the rat. Am J Anat 109:85–101

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Ushiki T (1992) Scanning electron microscopic observations of the immunodefensive systems with special reference to the surface morphology of the non-lymphoid cells. Arch Histol Cytol 55 (Suppl):105–113

    Article  PubMed  Google Scholar 

  • Godart SJ, Hamilton WF (1963) Lymphatic drainage of the spleen. Am J Physiol 204:1107–1114

    CAS  PubMed  Google Scholar 

  • Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95:258–263

    Article  CAS  PubMed  Google Scholar 

  • Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451–460

    Article  CAS  PubMed  Google Scholar 

  • Hokazono K, Miyoshi M (1984) Scanning- and transmission electron-microscopic study of lymphatic vessels in the splenic white pulp of the macaque monkey. Cell Tissue Res 237:1–6

    Article  CAS  PubMed  Google Scholar 

  • Janout V, Weiss L (1972) Deep splenic lymphatics in the marmot: an electron microscopic study. Anat Rec 172:197–219

    Article  CAS  PubMed  Google Scholar 

  • Kaipainen A, Korhonen J, Mustonen T, Hinsbergh VW van, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92:3566–3570

    Article  CAS  PubMed  Google Scholar 

  • Katsuki N (1925) Über das tiefe Lymphgefäßsystem der Milz. Transact Jpn Pathol Soc 15:95–96

    Google Scholar 

  • Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, Birner P, Krieger S, Hovorka A, Silberhumer G, Laakkonen P, Petrova T, Langer B, Raab I (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15:603–612

    Article  CAS  PubMed  Google Scholar 

  • Kihara T (1956) Das extravaskuläre Saftbahnsystem. Okajimas Fol Anat Jap 28:601–621

    Google Scholar 

  • Koshikawa T, Asai J, Iijima S (1984) Cellular and humoral dynamics in the periarterial lymphatic sheaths of rat spleens. Acta Pathol Jpn 34:1301–1311

    CAS  PubMed  Google Scholar 

  • Langevoort HL (1963) The histophysiology of the antibody response. I. Histogenesis of the plasma cell reaction in rabbit spleen. Lab Invest 12:106–118

    CAS  PubMed  Google Scholar 

  • Martinez-Pomares L, Hanitsch LG, Stillion R, Keshav S, Gordon S (2005) Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen. Lab Invest 85:1238–1249

    Article  CAS  PubMed  Google Scholar 

  • Matsuno K, Ezaki T, Kotani M (1989) Splenic outer periarterial lymphoid sheath (PALS): an immunoproliferative microenvironment constituted by antigen-laden marginal metallophils and ED2-positive macrophages in the rat. Cell Tissue Res 257:459–470

    Article  CAS  PubMed  Google Scholar 

  • Mebius RE, Nolte MA, Kraal G (2004) Development and function of the splenic marginal zone. Crit Rev Immunol 24:449–464

    Article  PubMed  Google Scholar 

  • Miyoshi M, Ogawa K (1997) Spleen (in Japanese). In: Ohtani O, Kato S, Uchino S (eds) Lymphatics - Morphology/Function/Ontogeny -, ed, Nishimura Bookstore, Niigata (Japan), pp 64-67

  • Pabst R, Binns RM (1989) Heterogeneity of lymphocyte homing physiology: several mechanisms operate in the control of migration to lymphoid and non-lymphoid organs in vivo. Immunol Rev 108:83–109

    Article  CAS  PubMed  Google Scholar 

  • Pellas TC, Weiss L (1990) Deep splenic lymphatic vessels in the mouse: a route of splenic exit for recirculating lymphocytes. Am J Anat 187:347–354

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Niedenfuhr M, Papoutsi M, Christ B, Nicolaides KH, Kaisenberg CS von, Tomarev SI, Wilting J (2001) Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat Embryol (Berl) 204:399–406

    Article  CAS  Google Scholar 

  • Sasou S, Sugai T (1992) Periarterial lymphoid sheath in the rat spleen: a light, transmission, and scanning electron microscopic study. Anat Rec 232:15–24

    Article  CAS  PubMed  Google Scholar 

  • Snook T (1946) Deep lymphatics of the spleen. Anat Rec 94:43–55

    Article  Google Scholar 

  • Thurston G, Baluk P, Hirata A, McDonald DM (1996) Permeability-related changes revealed at endothelial cell borders in inflamed venules by lectin binding. Am J Physiol 271:H2547–H2562

    CAS  PubMed  Google Scholar 

  • Ushiki T, Ohtani O, Abe K (1995) Scanning electron microscopic studies of reticular framework in the rat mesenteric lymph node. Anat Rec 241:113–122

    Article  CAS  PubMed  Google Scholar 

  • Veerman AJ, Ewijk W van (1975) White pulp compartments in the spleen of rats and mice. A light and electron microscopic study of lymphoid and non-lymphoid celltypes in T- and B-areas. Cell Tissue Res 156:417–441

    Article  CAS  PubMed  Google Scholar 

  • Veerman AJ, Vries HD (1976) T- and B-areas in immune reactions. Volume changes in T and B cell compartments of the rat spleen following intravenous administration of a thymus-dependent (SRBC) and a thymus-independent (paratyphoid vaccin-endotoxin) antigen. A histometric study. Z Immunitatsforsch Exp Klin Immunol 151:202–218

    CAS  PubMed  Google Scholar 

  • Willfuhr KU, Westermann J, Pabst R (1990) Absolute numbers of lymphocytes subsets migrating through the compartments of the normal and transplanted rat spleen. Eur J Immunol 20:903–911

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R, Imai T, Hieshima K, Kusuda J, Baba M, Kitaura M, Nishimura M, Kakizaki M, Nomiyama H, Yoshie O (1997) Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J Biol Chem 272:13803–13809

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O (1998) Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 273:7118–7122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sachiko Miyamoto-Kikuta and Dr. Ayako Nakamura-Ishizu for their advice and Ms. Kazuko Nakada, Ms. Hiromi Sagawa, Ms. Yasuko Yamazaki, and Ms. Kae Motomaru for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Ezaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, K., Morikawa, S., Kitahara, S. et al. Local lymphogenic migration pathway in normal mouse spleen. Cell Tissue Res 338, 423–432 (2009). https://doi.org/10.1007/s00441-009-0888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0888-5

Keywords

Navigation