Skip to main content
Log in

Oleate and linoleate stimulate degradation of β-casein in prolactin-treated HC11 mouse mammary epithelial cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although virtually all cells store neutral lipids as cytoplasmic lipid droplets, mammary epithelial cells have developed a specialized function to secrete them as milk fat globules. We have used the mammary epithelial cell line HC11 to evaluate the potential connections between the lipid and protein synthetic pathways. We show that unsaturated fatty acids induce a pronounced proliferation of cytoplasmic lipid droplets and stimulate the synthesis of adipose differentiation-related protein. Unexpectedly, the cellular level of β-casein, accumulated under lactogenic hormone treatment, decreases following treatment of the cells with unsaturated fatty acids. In contrast, saturated fatty acids have no significant effect on either cytoplasmic lipid droplet proliferation or cellular β-casein levels. We demonstrate that the action of unsaturated fatty acids on the level of β-casein is post-translational and requires protein synthesis. We have also observed that proteasome inhibitors potentiate β-casein degradation, indicating that proteasomal activity can destroy some cytosolic protein(s) involved in the process that negatively controls β-casein levels. Finally, lysosome inhibitors block the effect of unsaturated fatty acids on the cellular level of β-casein. Our data thus suggest that the degradation of β-casein occurs via the microautophagic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ando H, Wen ZM, Kim HY, Valencia JC, Costin GE, Watabe H, Yasumoto K, Niki Y, Kondoh H, Ichihashi M, Hearing VJ (2006) Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J 394:43–50

    Article  CAS  PubMed  Google Scholar 

  • Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B (1988) Prolactin regulation of β-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J 7:2089–2095

    CAS  PubMed  Google Scholar 

  • Bostrom P, Rutberg M, Ericsson J, Holmdahl P, Andersson L, Frohman MA, Boren J, Olofsson SO (2005) Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler Thromb Vasc Biol 25:1945–1951

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–2263

    CAS  PubMed  Google Scholar 

  • Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842

    Article  CAS  PubMed  Google Scholar 

  • Brown DA (2001) Lipid droplets: proteins floating on a pool of fat. Curr Biol 11:R446–R449

    Article  CAS  PubMed  Google Scholar 

  • Caro LH, Plomp PJ, Wolvetang EJ, Kerkhof C, Meijer AJ (1988) 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur J Biochem 175:325–329

    Article  CAS  PubMed  Google Scholar 

  • Chanat E, Martin P, Ollivier-Bousquet M (1999) Alpha(S1)-casein is required for the efficient transport of beta- and kappa-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J Cell Sci 112:3399–3412

    CAS  PubMed  Google Scholar 

  • Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72

    Article  CAS  PubMed  Google Scholar 

  • Das A, Boggaram V (2007) Proteasome dysfunction inhibits surfactant protein gene expression in lung epithelial cells: mechanism of inhibition of SP-B gene expression. Am J Physiol Lung Cell Mol Physiol 292:L74–L84

    Article  CAS  PubMed  Google Scholar 

  • Fenteany G, Schreiber SL (1998) Lactacystin, proteasome function, and cell fate. J Biol Chem 273:8545–8548

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Serrero G (1999) Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 274:16825–16830

    Article  CAS  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  • Gordon GB (1977) Saturated free fatty acid toxicity. II. Lipid accumulation, ultrastructural alterations, and toxicity in mammalian cells in culture. Exp Mol Pathol 27:262–276

    Article  CAS  PubMed  Google Scholar 

  • Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476–482

    Article  CAS  PubMed  Google Scholar 

  • Heid HW, Keenan TW (2005) Intracellular origin and secretion of milk fat globules. Eur J Cell Biol 84:245–258

    Article  CAS  PubMed  Google Scholar 

  • Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW (1998) Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 294:309–321

    Article  CAS  PubMed  Google Scholar 

  • Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, Nawata H (2002) ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab 283:E775–E783

    CAS  PubMed  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135

    Article  CAS  PubMed  Google Scholar 

  • Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147:3398–3407

    Article  CAS  PubMed  Google Scholar 

  • Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR (1999) Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 10:51–58

    Article  CAS  PubMed  Google Scholar 

  • MacLaren AP, Chapman RS, Wyllie AH, Watson CJ (2001) p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ 8:210–218

    Article  CAS  PubMed  Google Scholar 

  • Masuda Y, Itabe H, Odaki M, Hama K, Fujimoto Y, Mori M, Sasabe N, Aoki J, Arai H, Takano T (2006) ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J Lipid Res 47:87–98

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115

    Article  CAS  PubMed  Google Scholar 

  • Murphy S, Martin S, Parton RG (2008) Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791:441–447

    PubMed  Google Scholar 

  • Ohsaki Y, Maeda T, Fujimoto T (2005) Fixation and permeabilization protocol is critical for the immunolabeling of lipid droplet proteins. Histochem Cell Biol 124:445–452

    Article  CAS  PubMed  Google Scholar 

  • Ollivier-Bousquet M (2002) Milk lipid and protein traffic in mammary epithelial cells: joint and independent pathways. Reprod Nutr Dev 42:149–162

    Article  CAS  PubMed  Google Scholar 

  • Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–438

    Article  CAS  PubMed  Google Scholar 

  • Robenek H, Lorkowski S, Schnoor M, Troyer D (2004) Spatial integration of TIP47 and adipophilin in macrophage lipid bodies. J Biol Chem 280:5789–5794

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  CAS  PubMed  Google Scholar 

  • Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512

    Article  CAS  PubMed  Google Scholar 

  • Thiele C, Spandl J (2008) Cell biology of lipid droplets. Curr Opin Cell Biol 20:378–385

    Article  CAS  PubMed  Google Scholar 

  • Tobin KA, Harsem NK, Dalen KT, Staff AC, Nebb HI, Duttaroy AK (2006) Regulation of ADRP expression by long-chain polyunsaturated fatty acids in BeWo cells, a human placental choriocarcinoma cell line. J Lipid Res 47:815–823

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. J Biol Chem 76:4350–4354

    CAS  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127

    Article  CAS  PubMed  Google Scholar 

  • Wolins NE, Rubin B, Brasaemle DL (2001) TIP47 associates with lipid droplets. J Biol Chem 276:5101–5108

    Article  CAS  PubMed  Google Scholar 

  • Wu CC, Howell KE, Neville MC, Yates JR III, McManaman JL (2000) Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21:3470–3482

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Sztalryd C, Lu X, Tansey JT, Gan J, Dorward H, Kimmel AR, Londos C (2005) Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J Biol Chem 280:42841–42847

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa T, Yonekura S, Kobayashi Y, Hagino A, Katoh K, Obara Y (2004) Effects of long-chain fatty acids on cytosolic triacylglycerol accumulation and lipid droplet formation in primary cultured bovine mammary epithelial cells. J Dairy Sci 87:2527–2534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the INRA-CRJ MIMA2 Platform for its expertise and to Dr. Fiona McAlpine (Cancer Research UK, London, UK) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Pauloin.

Additional information

A.P. is supported by the Centre National de la Recherche Scientifique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauloin, A., Chat, S., Péchoux, C. et al. Oleate and linoleate stimulate degradation of β-casein in prolactin-treated HC11 mouse mammary epithelial cells. Cell Tissue Res 340, 91–102 (2010). https://doi.org/10.1007/s00441-009-0926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0926-3

Keywords

Navigation