Skip to main content

Advertisement

Log in

Aquaporin-1 in blood vessels of rat circumventricular organs

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although the water channel protein aquaporin-1 (AQP1) is widely observed outside the rat brain in continuous, but not fenestrated, vascular endothelia, it has not previously been observed in any endothelia within the normal rat brain and only to a limited extent in the human brain. In this immunohistochemical study of rat brain, AQP1 has also been found in microvessel endothelia, probably of the fenestrated type, in all circumventricular organs (except the subcommissural organ and the vascular organ of the lamina terminalis): in the median eminence, pineal, subfornical organ, area postrema and choroid plexus. The majority of microvessels in the median eminence, pineal and choroid plexus, known to be exclusively fenestrated, are shown to be AQP1-immunoreactive. In the subfornical organ and area postrema in which many, but not all, microvessels are fenestrated, not all microvessels are AQP1-immunoreactive. In the AQP1-immunoreactive microvessels, the AQP1 probably facilitates water movement between blood and interstitium as one component of the normal fluxes that occur in these specialised sensory and secretory areas. AQP1-immunoreactive endothelia have also been seen in a small population of blood vessels in the cerebral parenchyma outside the circumventricular organs, similar to other observations in human brain. The proposed development of AQP1 modulators to treat various brain pathologies in which AQP1 plays a deleterious role will necessitate further work to determine the effect of such modulators on the normal function of the circumventricular organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nature Neurosci Rev 7:1–13

    Google Scholar 

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol (Lond) 542:3–16

    Article  CAS  Google Scholar 

  • Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367–378

    Article  CAS  PubMed  Google Scholar 

  • Bouchaud C, Le Bert M, Dupouey P (1989) Are close contacts between astrocytes and endothelial cells a prerequisite condition of a blood-brain barrier? The rat subfornical organ as an example. Biol Cell 67:159–165

    Article  CAS  PubMed  Google Scholar 

  • Dolman D, Drndarski S, Abbott NJ, Rattray M (2005) Induction of aquaporin 1 but not aquaporin messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem 93:825–833

    Article  CAS  PubMed  Google Scholar 

  • Gannon BJ, Carati CJ (2003) Endothelial distribution of the membrane water channel molecule aquaporin-1: implications for tissue and lymph fluid physiology? Lymph Res Biol 1:55–66

    Article  CAS  Google Scholar 

  • Gross PM (1992) Circumventricular organ capillaries. Prog Brain Res 91:219–233

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Yokoo H, Yanagita T, Satoh S, Kis B, Deli M, Niwa M, Wada A (2006) Induction of aquaporin 1 by dexamethasone in lipid rafts in immortalized brain microvascular endothelial cells. Brain Res 1123:12–19

    Article  CAS  PubMed  Google Scholar 

  • Krisch B, Leonhardt H, Oksche A (1987) Compartments in the organum vasculosum laminae terminalis of the rat and their delineation against the outer cerebrospinal fluid-containing space. Cell Tissue Res 250:331–347

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara S, Maeda S, Tanaka K, Hayakawa T, Seki M (2007) Expression of aquaporin water channels in the rat pituitary gland. J Vet Med Sci 69:1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Minson J (1992) Complete penetration of antibodies into Vibratome sections after glutaraldehyde fixation and ethanol treatment: light and electron microscopy for neuropeptides. J Histochem Cytochem 40:1741–1749

    CAS  PubMed  Google Scholar 

  • Longatti PL, Basaldella L, Orvieto E, Fiorindi A, Carteri A (2004) Choroid plexus and aquaporin-1: a novel explanation of cerebrospinal fluid production. Pediatr Neurosurg 40:277–283

    Article  CAS  PubMed  Google Scholar 

  • Longatti P, Basaldella L, Orvieto E, Dei Tos A, Martinuzzi A (2006) Aquaporin(s) expression in choroid plexus tumours. Pediatr Neurosurg 42:228–233

    Article  PubMed  Google Scholar 

  • Maolood N, Meister B (2009) Protein components of the blood-brain barrier (BBB) in the brainstem area postrema-nucleus tractus solitarius region. J Chem Neuroanat 37:182–195

    Article  CAS  PubMed  Google Scholar 

  • Marchesi VT, Barrnett RJ (1964) The localization of nucleosidephosphatase activity in different types of small blood vessels. J Ultrastr Res 10:103–115

    Article  CAS  Google Scholar 

  • Maunsbach AB, Marples D, Chin E, Ning G, Bondy C, Agre P, Nielsen S (1997) Aquaporin-1 water channel expression in human kidney. J Am Soc Nephrol 8:1–14

    CAS  PubMed  Google Scholar 

  • Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Szekeres G, Kvell K, Berki T, Németh P (2002) Development and characterisation of a monoclonal antibody family against aquaporin 1 (AQP1) and aquaporin 4 (AQP4). Pathol Oncol Res 8:115–124

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB (1995) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268:F1023–F1037

    CAS  PubMed  Google Scholar 

  • Nielsen S, King LS, Christensen BM, Agre P (1997) Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Physiol 273:C1549–C1561

    CAS  PubMed  Google Scholar 

  • Norsted E, Gömüç B, Meister B (2008) Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J Chem Neuroanat 36:107–121

    Article  CAS  PubMed  Google Scholar 

  • Oldfield BJ, Ganten D, McKinley MJ (1989) An ultrastructural analysis of the distribution of angiotensin II in the rat brain. J Neuroendocrinol 1:121–128

    Article  CAS  PubMed  Google Scholar 

  • Oldfield BJ, McKinley MJ (2004) Circumventricular organs. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, London, pp 389–406

    Google Scholar 

  • Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB J 19:76–78

    CAS  PubMed  Google Scholar 

  • Petrov T, Howarth AG, Krukoff TL, Stevenson BR (1994) Distribution of the tight junction-associated protein ZO-1 in circumventricular organs of the CNS. Mol Brain Res 21:235–246

    Article  CAS  PubMed  Google Scholar 

  • Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291:C59–C67

    Article  CAS  PubMed  Google Scholar 

  • Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S (2002) Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer 87:621–623

    Article  CAS  PubMed  Google Scholar 

  • Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  CAS  PubMed  Google Scholar 

  • Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo. Neuropathology 27:245–256

    Article  PubMed  Google Scholar 

  • Shaver SW, Sposito NM, Gross PM (1990) Quantitative fine structure of capillaries in subregions of the rat subfornical organ. J Comp Neurol 294:145–152

    Article  CAS  PubMed  Google Scholar 

  • Shaver SW, Pang JJ, Wall KM, Sposito NM, Gross PM (1991) Subregional topography of capillaries in the dorsal vagal complex of rats. I. Morphometric properties. J Comp Neurol 306:73–82

    Article  CAS  PubMed  Google Scholar 

  • Shaver SW, Pang JJ, Wainman DS, Wall KM, Gross PM (1992) Morphology and function of capillary networks in subregions of the rat tuber cinereum. Cell Tissue Res 267:437–448

    Article  CAS  PubMed  Google Scholar 

  • Shin I, Kim HJ, Lee JE, Gye MC (2006) Aquaporin7 expression during perinatal development of mouse brain. Neurosci Lett 409:106–111

    Article  CAS  PubMed  Google Scholar 

  • Speake T, Freeman LJ, Brown PD (2003) Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochem Biophys Acta 1609:80–86

    Article  CAS  PubMed  Google Scholar 

  • Sposito NM, Gross PM (1987) Topography and morphometry of capillaries in the rat subfornical organ. J Comp Neurol 260:34–46

    Article  Google Scholar 

  • Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS (2006) Aquaporins in endothelia. Kidney Int 69:1120–1123

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS, Hara-Chikuma M, Papadopoulos MC (2008) Aquaporins—new players in cancer biology. J Mol Med 86:523–529

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Morimoto A, Murakami N (1993) Organum vasculosum laminae terminalis (OVLT) in rabbit and rat: topographic studies. J Comp Neurol 330:352–362

    Article  CAS  PubMed  Google Scholar 

  • Zador Z, Bloch O, Yao X, Manley GT (2007) Aquaporins: role in cerebral edema and brain water balance. Prog Brain Res 161:185–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Renata Billing provided skilled technical assistance. Dr. I.J. Llewellyn-Smith kindly provided a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Wilson.

Additional information

Bren J. Gannon died 13/10/09.

This work was supported by a Flinders Institute for Health and Medical Research Competitive Research Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A.J., Carati, C.J., Gannon, B.J. et al. Aquaporin-1 in blood vessels of rat circumventricular organs. Cell Tissue Res 340, 159–168 (2010). https://doi.org/10.1007/s00441-010-0927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0927-2

Keywords

Navigation