Skip to main content

Advertisement

Log in

Follicular determinants of pregnancy establishment and maintenance

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Synchronization of dominant follicle development and control of ovulation/oocyte retrieval are commonly used assisted reproductive technologies in both cattle and humans. The final maturation of the dominant follicle is intimately tied to the final maturation of the oocyte, preovulatory secretion of estradiol, preparation of follicular cells for luteinization, postovulatory secretion of progesterone and endocrine control of the oviductal and uterine environment for gamete and embryo development. The physiological maturity of a dominant/ovulatory follicle can affect the establishment and maintenance of pregnancy. Premature induction of the ovulatory process can reduce pregnancy rates and increase late embryonic/fetal mortality in cattle, which is likely mediated through inadequate oocyte competence and a compromised maternal environment. Oocyte competence increases with follicular maturity and is dependent upon acquisition of a complete complement of mRNA transcripts and establishment of the appropriate epigenetic marking of the oocyte genome before the preovulatory gonadotropin surge. Preovulatory secretion of estradiol is a reflection of follicular maturity and affects the oocyte, follicular cells, oviduct and uterus. The corpus luteum is a continuation of follicular maturation and rate of progesterone secretion following ovulation is linked to fertility. Advancements in our understanding of how the follicular microenvironment affects pregnancy establishment and maintenance will improve the efficiency of assisted reproductive technologies in all species. The purpose of this review is to discuss how follicular microenvironment, oocyte competence, preovulatory secretion of estradiol and postovulatory secretion of progesterone can affect pregnancy establishment and embryo/fetal survival, with an emphasis on cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberman E (1988) The epidemiology of repeated abortion. In: Beard RW, Sharp F (eds) Early pregnancy loss: mechanisms and treatment. RCOG, London, pp 9–17

    Google Scholar 

  • Albertini DF, Sanfins A, Combelles MH (2003) Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online 6:410–415

    PubMed  CAS  Google Scholar 

  • Allison AJ, Robinson TJ (1972) The recovery of spermatozoa from the reproductive tract of the spayed we treated with progesterone and oestrogen. J Reprod Fertil 31:215

    PubMed  CAS  Google Scholar 

  • Allrich RD (1994) Endocrine and neural control of estrus in dairy cows. J Dairy Sci 77:2738–2744

    PubMed  CAS  Google Scholar 

  • Andriesz C, Trounson A (1995) The effect of testosterone on the maturation and developmental capacity of murine oocytes in vitro. Hum Reprod 10:2377–2381

    Google Scholar 

  • Arlotto T, Schwarts JL, First NL, Leibfried-Rutledge ML (1996) Aspects of follicle and oocyte stage that affect in vitro maturation and development of bovine oocytes. Theriogenology 45:943–956

    PubMed  CAS  Google Scholar 

  • Assidi M, Dufort I, Ali A, Hamel M, Algrany O, Dielemann S, Sirard MA (2008) Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod 79:209–222

    PubMed  CAS  Google Scholar 

  • Atkins JA, Smith MF, MichNeil MD, Jinks EM, Geary TW (2010) Contributions of follicle size to establishment and maintencance of pregnancy in suckled beef cows using reciprocal embryo transfer. Reproduction in domestic ruminants VII. Nottingham University Press, Nottingham, Abst. 548

    Google Scholar 

  • Balboula AZ, Yamanaka K, Sakatani M, Hegab AO, Zaabel SM, Takahashi M (2010) Cathepsin B activity is related to the quality of bovine cumulus oocyte complexes and its inhibition can improve their developmental competence. Mol Reprod Dev 77:439–448

    PubMed  CAS  Google Scholar 

  • Bao S, Obata Y, Carroll J, Domeki I, Kono T (2000) Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol Reprod 62:616–621

    PubMed  CAS  Google Scholar 

  • Barlow DP (2011) Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 45:379–404

    PubMed  CAS  Google Scholar 

  • Bartol FF, Thatcher WW, Lewis GS, Bliss EL, Drost M, Bazer FW (1981) Effect of estradiol-17beta on PGF and total protein content in bovine uterine flushings and peripheral plasma concentration of 13, 14-dihydro-15-keto-PGF(2alpha). Theriogenology 15:345–358

    PubMed  CAS  Google Scholar 

  • Bauersachs S, Ulbrich SE, Gross K, Schmidt SEM, Meyer HHD, Einspanier R, Wenigerkind H, Vermehren M, Blum H, Sinowatz F, Wolf E (2005) Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. J Mol Endocrinol 34:889–908

    PubMed  CAS  Google Scholar 

  • Beker-van Woudenberg AR, van Tol HTA, Roelen BAJ, Colenbrander B, Bevers MM (2004) Estradiol and its membrane-impermeable conjugate (estradiol-bovine serum albumin) during in vitro maturation of bovine oocytes: effects on nuclear and cytoplasmic maturation, cytoskeleton, and embryo quality. Biol Reprod 70:1465–1474

    PubMed  CAS  Google Scholar 

  • Beker-van Woudenberg AR, Zeinstra EC, Roelen BAJ, Colenbrander B, Bevers MM (2006) Developmental competence of bovine oocytes after specific inhibition of MPF kinase activity: effect of estradiol supplementation and follicle size. Anim Reprod Sci 92:231–240

    PubMed  CAS  Google Scholar 

  • Bello NM, Steibel JP, Pursley JR (2006) Optimizing ovulation to first GnRH improved outcomes to each hormonal injection of ovsynch in lactating dairy cows. J Dairy Sci 89:3413–3424

    PubMed  CAS  Google Scholar 

  • Bellows DS, Ott SL, Bellows RA (2002) Review: cost of reproductive diseases and conditions in cattle. Prof Anim Sci 18:26–32

    Google Scholar 

  • Bergh C, Broden H, Lundin K, Hamberger L (1998) Comparsion of fertilization, cleavage and pregnancy rates of oocytes from large and small follicles. Hum Reprod 13(7):1912–1915

    PubMed  CAS  Google Scholar 

  • Bettegowda A, Patel OV, Lee KB, Park KE, Salem M, Yao J, Ireland JJ, Smith GW (2008) Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications. Biol Reprod 79:301–309

    PubMed  CAS  Google Scholar 

  • Blondin PD, Sirard MA (1995) Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol Reprod Dev 41:54–62

    PubMed  CAS  Google Scholar 

  • Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four and eight cell stages of preimplantation development. Nature 332:459–461

    PubMed  CAS  Google Scholar 

  • Brevini-Gandolfi TAL, Gandolfi F (2001) The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology 55:1255–1276

    Google Scholar 

  • Bridges, GA, Mussard ML, Winkler JL, Gasser CL, Grum DE, Pate JL, Day ML (2005) Influence of duration of proestrus on preovulatory estradiol concentrations and uterine gene expression following induced ovulation in cattle. Proceedings of the 38th Society for the Study of Reproduction Annual Meetings, p 180; (Abstr.) M451

  • Bridges, GA, Mussard ML, Helser LA, Grum DE, Lantz DM, Ott TL, Pate JL, Day ML (2006a) Effect of preovulatory estradiol concentrations on conceptus and uterine development. Proceedings of the 7th International Ruminant Reproduction Symposium, p 91: (Abstr.) 90

  • Bridges GA, Mussard ML, Grum DE, Helser LA, Gasser CL, Dauch DM, Pate JL, Day ML (2006b) The influence of preovulatory estradiol concentrations on uterine function in beef cattle. ASAS Proc. Midwest sections. 207: (Abstr.)

  • Bridges GA, Mussard ML, Burke CR, Day ML (2010) Influence of the length of proestrus on fertility and endocrine function in female cattle. Anim Reprod Sci 117:208–215

    PubMed  CAS  Google Scholar 

  • Buhi WC (2002) Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction 123:355–362

    PubMed  CAS  Google Scholar 

  • Burke CR, Mussard DE, Gasser CL, Grum DE, Day ML (2001) Effects of maturity of the potential ovulatory follicle on induction of oestrus and ovulation in cattle with oestradiol benzoate. Anim Reprod Sci 66:161–174

    PubMed  CAS  Google Scholar 

  • Campbell BK, Souza C, Gong J, Webb R, Kendall N, Marsters P, Robinson G, Mitchell A, Telfer EE, Baird DT (2003) Domestic ruminants as models for elucidation of the mechanism controlling ovarian follicle development in humans. Reproduction in domestic ruminants V. Nottingham University Press, Nottingham, pp 429–443

    Google Scholar 

  • Carter F, Forde N, Duffy P, Wade M, Fair T, Crowe MA, Evans AC, Kenny DA, Roche JF, Lonergan P (2008) Effect of increasing progesterone concentration from day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod Fertil Dev 20:368–375

    PubMed  CAS  Google Scholar 

  • Cascieri M, Amann RP, Hammerstedt RH (1976) Adenine nucleotide changes at initiation of bull sperm motility. J Biol Chem 251:787–793

    PubMed  CAS  Google Scholar 

  • CDC Division of Reproductive Health (2009) Assisted reproductive technology. http://www.cdc.gov/reproductivehealth/data_stats/index.htm#ART Accessed September 20, 2011

  • Chenault JR, Thatcher WW, Kalra PS, Abrams RM, Wilcox CJ (1975) Transitory changes in plasma progestins, estradiol, and luteinizing hormone approaching ovulation in the bovine. J Dairy Sci 58:709–717

    PubMed  CAS  Google Scholar 

  • Christen R, Schackmann RW, Shapiro BM (1982) Elevation of the intracellular ph activates respiration and motility of sperm of the sea urchin, strongylocentrotus purpuratus. J Biol Chem 257:14881–14890

    PubMed  CAS  Google Scholar 

  • Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F (2007) Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction 134:645–650

    PubMed  CAS  Google Scholar 

  • Clemente M, de La Fuente J, Fair T, Naib AA, Gutierrez-Adan A, Roche JF, Rizos D, Lonergan P (2009) Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction 138:507–517

    PubMed  CAS  Google Scholar 

  • Crisman RO, McDonald LE, Thompson FN (1980) Effects of progesterone or estradiol on uterine tubal transport of ova in the cow. Theriogenology 13:141–154

    PubMed  CAS  Google Scholar 

  • Crozet N, Kanka J, Motlik J, Fulka J (1986) Nucleolar fine structure and RNA synthesis in bovine oocytes from antral follicles. Gamete Res 14:65–73

    CAS  Google Scholar 

  • Dias CC, Wechsler FS, Day ML, Vasconcelos JLM (2009) Progesterone concentrations, exogenous equine chorionic gonadotropin, and timing of prostaglandin F2a treatment affect fertility in postpuberal Nelore heifers. Theriogenology 72:378–385

    PubMed  CAS  Google Scholar 

  • Driancourt MA, Thuel B, Mermillod P, Lonergan P (1998) Relationship between oocyte quality (measured after IVM, IVF and IVC of individual oocytes) and follicle function in cattle. Theriogenology 1:345–362

    Google Scholar 

  • Eppig JJ (1991) Maintenance of meiotic arrest and the induction of oocyte maturation in mouse oocyte-granulosa cell complexes developed in vitro from preantral follicles. Biol Reprod 45:824–830

    PubMed  CAS  Google Scholar 

  • Eppig JJ (1996) Coordination of nuclear and cytoplasmic maturation in eutherian mammals. Reproduction 8:485–489

    CAS  Google Scholar 

  • Eppig JJ (2001) Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829–838

    PubMed  CAS  Google Scholar 

  • Eppig JJ, Wigglesworth K, Pendola FL (2002) The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 99:2890–2894

    PubMed  CAS  Google Scholar 

  • Evans AC, Fortune JE (1997) Selection of the dominant follicle in cattle occurs in the absence of differences in the expression of messenger ribonucleic acid for gonadotropin receptors. Endocrinology 138:2963–2971

    PubMed  CAS  Google Scholar 

  • Fair T, Hyttel P, Greve T (1995) Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev 42:437–442

    PubMed  CAS  Google Scholar 

  • Fair T, Hyttel P, Greve T, Boland M (1996) Nucleus structure and transcriptional activity in relation to oocyte diameter in cattle. Mol Reprod Dev 43:503–512

    PubMed  CAS  Google Scholar 

  • Fair T, Hulshof SCJ, Hyttel P, Greve T, Boland M (1997a) Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Mol Reprod Dev 46:208–215

    PubMed  CAS  Google Scholar 

  • Fair T, Hulshof SCJ, Hyttel P, Boland M, Greve T (1997b) Bovine oocyte ultrastructure in primordial to tertiary follicles. Anat Embryol 195:327–336

    PubMed  CAS  Google Scholar 

  • Fan T, Hagan JP, Kozlov SV, Stewart CL, Muegge K (2005) Lsh controls silencing of the imprinted Cdkn1c gene. Development 132:635–644

    PubMed  CAS  Google Scholar 

  • Feil R (2009) Epigenetic asymmetry in the zygote and mammalian development. Int J Dev Biol 53:191–201

    PubMed  CAS  Google Scholar 

  • Fields SD, Gebhart KL, Perry BL, Gonda MG, Wright CL, Bott RC, Perry GA (2012) Effects of Initiation of standing estrus prior to an injection of GnRH on LH release, subsequent concentrations of progesterone, and steroidogenic enzyme expression. Domest Anim Endocrinol 42:11–19

    Google Scholar 

  • Fortune JE (1986) Bovine theca and granulosa cells interact to promote androgen production. Biol Reprod 35:292–299

    PubMed  CAS  Google Scholar 

  • Fuhrer F, Mayr B, Schellander K, Kalat M, Schleger W (1989) Maturation competence and chromatin behaviour in growing and fully grown cattle oocytes. J Vet Med Ser A 36:285–291

    CAS  Google Scholar 

  • Fukui Y, Ono H (1989) Effects of sera, hormones and granulose cells added to culture medium for in-vitro maturation, fertilization, cleavage and development of bovine oocytes. J Reprod Fertil 86:501–506

    PubMed  CAS  Google Scholar 

  • Fulop C, Szanto S, Mukhopadhyay D, Bardos T, Kamath RV, Rugg MS, Day AJ, Salustri A, Hascall VC, Glant TT, Mikecz K (2003) Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development 130:2253–2261

    PubMed  CAS  Google Scholar 

  • Funston RN, Lipsey RJ, Geary TW, Roberta AJ (2005) Effect of administration of human chorionic gonadotropin after artificial insemination on concentrations of progesterone and conception rates in beef heifers. J Anim Sci 83:1403–1405

    PubMed  CAS  Google Scholar 

  • Galvao KN, Santos JEP, Coscioni AC, Juchem SO, Chebel RC, Sischo WM, Villasenor M (2006) Embryo survival from gossypol-fed heifers and transfer to lactating cows treated with human chorionic gonadotropin. J Dairy Sci 89:2056–2064

    PubMed  CAS  Google Scholar 

  • Garret JE, Geisert RD, Zavy MT, Morgan GL (1988) Evidence for maternal regulation of early conceptus growth and development in beef cattle. J Reprod Fertil 84:437–446

    Google Scholar 

  • Garverick HA, Smith MF (1986) Mechanisms associated with subnormal luteal function. J Anim Sci 62(suppl 2):92–105

    PubMed  Google Scholar 

  • Geisert RD, Morgan GL, Short EC, Zavy MT (1992) Endocrine events associated with endometrial function and conceptus development in cattle. Reprod Fertil Dev 4:301–305

    PubMed  CAS  Google Scholar 

  • Ghosh D, De P, Sengupta J (1994) Luteal phase ovarian oestrogen is not essential for implantation and maintenance of pregnancy from surrogate embryo transfer in the rhesus monkey. Hum Reprod 9:629–637

    PubMed  CAS  Google Scholar 

  • Gimenes LU, Sa Filho MF, Carvalho NAT, Torres-Junior JRS, Souza AH, Madureira EH, Trinca LA, Sartorelli ES, Carvalho JBP, Mapletoft RJ, Baruselli PS (2008) Follicle deviation and ovulatory capacity in Bos indicus heifers. Theriogenology 67:852–858

    Google Scholar 

  • Ginther OJ, Bergfelt DR, Kulick LJ, Kot K (2000) Selection of the dominant follicle in cattle: role of estradiol. Biol Reprod 63:383–389

    PubMed  CAS  Google Scholar 

  • Goldenberg RL, Vaitukaitis JL, Ross GT (1972) Estrogen and follicle stimulating hormone interactions on follicle growth in rats. Endocinology 90:1492–1498

    CAS  Google Scholar 

  • Gonen Y, Balakier H, Powell W, Casper RF (1990) Use of gonadotropin releasing hormone agonist to trigger follicular maturation for in vitro fertilization. J Clin Endocrinol Metab 71:918–922

    PubMed  CAS  Google Scholar 

  • Goodman AL, Hodgen GD (1979) Between-ovary interaction in the regulation of follicle growth, corpus luteum function, and gonadotropin secretion in the primate ovarian cycle. II. Effects of lutectomy and hemovariectomy during luteal phase in cynomolgus monkeys. Endocrinology 104:1310

    PubMed  CAS  Google Scholar 

  • Gore-Langton RE, Armstrong DT (1994) Follicular steroidogenesis and its control. In: Knobil E, Neill JD 2nd (eds) The physiology of reproduction. Raven, New York, pp 571–627

    Google Scholar 

  • Gosden RG (2002) Oogenesis as a foundation for embryogenesis. Mol Cell Endocrinol 186:149–153

    PubMed  CAS  Google Scholar 

  • Goudet G, Bezard J, Duchamp G, Gerard N, Palmer E (1997) Equine oocyte competence for nuclear and cytoplasmic in vitro maturation: effect of follicle size and hormonal environment. Biol Reprod 57:232–245

    PubMed  CAS  Google Scholar 

  • Grant JK, Perry GA (2010) Uterine expression of Na+/H+ antiporters 1, 2, and 4 in beef cows following CIDR removal. Reproduction in Domestic Ruminants VII abstr. 564

  • Gray CA, Burghardt RC, Johnson GA, Bazer FW, Spencer TE (2002) Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124:289–300

    PubMed  CAS  Google Scholar 

  • Grewel SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802

    Google Scholar 

  • Groothuis PG, Dassen HNMH, Romano A, Punyadeera C (2007) Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and humans. Hum Reprod Updat 13:405–417

    CAS  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    PubMed  CAS  Google Scholar 

  • Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, Sirard MA (2008) Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod 23:1118–1127

    PubMed  CAS  Google Scholar 

  • Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, Sirard MA (2010) Genomic assessment of follicular marker genes as pregnancy predicators for human IVF. Mol Hum Reprod 16:87–96

    PubMed  CAS  Google Scholar 

  • Hanlon DW, Jarratt GM, Davidson PJ, Millar AJ, Douglas VL (2005) The effect of hCG administration five days after insemination on the first service conception rate of anestrous dairy cows. Theriogenology 63:1938–1945

    PubMed  CAS  Google Scholar 

  • Hawk HW (1983) Sperm survival and transport in the female reproductive tract. J Dairy Sci 66:2645–2660

    PubMed  CAS  Google Scholar 

  • Hazeleger NL, Hill DJ, Stubbing RB, Walton JS (1995) Relationship of morphology and follicular fluid environment of bovine oocytes to their developmental potential in vitro. Theriogenology 43:509–522

    PubMed  CAS  Google Scholar 

  • Hiura H, Obata Y, Komiyama J, Shirai M, Kono T (2006) Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11:353–361

    PubMed  CAS  Google Scholar 

  • Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838

    PubMed  CAS  Google Scholar 

  • Howlett SK, Reick W (1991) Methylation levels of maternal and paternal genomes during preimplantation development. Development 113:119–127

    PubMed  CAS  Google Scholar 

  • Hu Y, Cortvrindt R, Smitz J (2002) Effects of aromatase inhibition on in virtro follicle and oocyte development analyzed by early preantral mouse follicle culture. Mol Reprod Dev 61:549–559

    PubMed  CAS  Google Scholar 

  • Hutter B, Helms V, Paulsen M (2006) Tandem repeats in the CpG islands of imprinted genes. Genomics 88:323–332

    PubMed  CAS  Google Scholar 

  • Hwang KC, Park SY, Park SP, Lim JH, Cui XS, Kim N (2005) Specific maternal transcripts in bovine oocytes and cleavage embryos: identification with novel DDRT-PCR methods. Mol Reprod Dev 71:275–283

    PubMed  CAS  Google Scholar 

  • Ing NH, Tornesi MB (1997) Estradiol up-regulates estrogen receptor and progesterone receptor gene expression in specific ovine uterine cells. Biol Reprod 56:1205–1215

    PubMed  CAS  Google Scholar 

  • Ing NH, Wolfskill RL, Clark S, DeGraauw JA, Gill CA (2006) Steroid hormones acutely regulate expression of a nudix protein-encoding gene in the endometrial epithelium of sheep. Mol Reprod Dev 73:967–976

    PubMed  CAS  Google Scholar 

  • Ito M, Iwata H, Kitagawa M, Kon Y, Kuwayama T, Monji Y (2008) Effect of follicular fluid collected from various diameter follicles on the progression of nuclear maturation and developmental competence of pig oocytes. Anim Reprod Sci 106:421–430

    PubMed  CAS  Google Scholar 

  • John RM, Lefebvre L (2011) Developmental regulation of somatic imprints. Differentiation 81:270–280

    PubMed  CAS  Google Scholar 

  • Johnson CH, Clapper DL, Winkler MM, Lee HC, Epel E (1983) A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular ph. Dev Biol 98:493–501

    PubMed  CAS  Google Scholar 

  • Jones JM, Bavister BD (2000) Acidification of intracellular pH in bovine spermatozoa suppresses motility and extends viable life. J Androl 21:616–624

    PubMed  CAS  Google Scholar 

  • Kerbler TL, Buhr MM, Jordan LT, Leslie KE, Walton JS (1997) Relationship between maternal plasma progesterone concentrations and interferon-tau synthesis by the conceptus in cattle. Theriogenology 47:703–714

    PubMed  CAS  Google Scholar 

  • Kim MK, Fibrianto YH, Oh HJ, Jang G, Kim HJ, Lee SK, Kang SK, Lee BC, Hwang WS (2005) Effects of estradiol-17β and progesterone supplementation on in vitro nuclear maturation of canine oocytes. Theriogenology 63:1342–1353

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Suda C, Abe T, Kohara Y, Ikemura T, Sasaki H (2006) Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternally methylated DMRs. Cytogenet Genome Res 113:130–137

    PubMed  CAS  Google Scholar 

  • Kolibianakis EM, Schultze-Mosgau A, Schroer A, van Steirteghem A, Devroey P, Diedrich K, Griesinger G (2005) A lower ongoing pregnancy rate can be expected when GnRH agonist is used for triggering final oocyte maturation instead of HCG in patients undergoing IVF with GnRH antagonists. Hum Reprod 20(10):2887–2892

    PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet 13:91–94

    PubMed  CAS  Google Scholar 

  • Krisher RL (2004) The effect of oocyte quality on development. J Anim Sci 82:E14–E23

    PubMed  Google Scholar 

  • Kulick LJ, Kot K, Wiltbank MC, Ginther OJ (1999) Follicular and hormonal dynamics during the first follicular wave in heifers. Theriogenology 52:913–921

    PubMed  CAS  Google Scholar 

  • Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW (2010) Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 82:791–801

    PubMed  CAS  Google Scholar 

  • Lamb GC, Stevenson JS, Kesler DJ, Garverick HA, Brown DR, Salfen BE (2001) Inclusion of an intravaginal progesterone insert plus GnRH and prostaglandin F2α for ovulation control in postpartum suckled beef cows. J Anim Sci 79:2253–2259

    PubMed  CAS  Google Scholar 

  • Lares SF, Fields SD, Perry BL, Chen DG, Perry GA (2008) Relationship between uterine pH at fixed-time AI and pregnancy success in beef cattle. J Anim Sci Supp. 86:581

    Google Scholar 

  • Lee HC, Johnson C, Epel D (1983) Changes in internal ph associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev Biol 95:31–45

    PubMed  CAS  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    PubMed  CAS  Google Scholar 

  • Lonergan P (2009) Embryonic loss in cattle: a cow or embryo-induced phenomenon?Proceedings of European Embryo Transfer Society 25th Annual Meeting POZNAN, Poland, pp 119–125

  • Lopes AS, Butler ST, Gilbert RO, Butler WR (2007) Relationship of pre-ovulatory follicle size, estradiol concentrations and season to pregnancy outcome in dairy cows. Anim Reprod Sci 99:34–43

    PubMed  CAS  Google Scholar 

  • Lucifero D, Mann MR, Bartolomei MS, Trasler JM (2004) Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 13:839–849

    PubMed  CAS  Google Scholar 

  • Mager J, Montgomery ND, de Villena FP, Magnuson T (2003) Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 33:502–507

    PubMed  CAS  Google Scholar 

  • Mann GE, Lamming GE (1999) The influence of progesterone during early pregnancy in cattle. Reprod Domest Anim 34:269–274

    CAS  Google Scholar 

  • Mann GE, Lamming GE (2001) Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction 121:175–180

    PubMed  CAS  Google Scholar 

  • Martin TL, Fogwell RL, Ireland JJ (1991) Concentrations of inhibins and steroids in follicular fluid during development of dominant follicules in heifers. Biol Reprod 44:693–700

    PubMed  CAS  Google Scholar 

  • Matzuk MM, Burns KH, Viveiros MM, Eppig JJ (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178–2180

    PubMed  CAS  Google Scholar 

  • McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, Amato P, Matzuk MM (2004) Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 19:2869–2874

    PubMed  CAS  Google Scholar 

  • McNatty KP (1979) Follicular determinants of corpus luteum function in the human ovary. Adv Exp Med Biol 112:465–481

    PubMed  CAS  Google Scholar 

  • McNeill RE, Diskin MG, Sreenan JM, Morris DG (2006) Associations between milk progesterone concentration on different days and with embryo survival during the early luteal phase in dairy cows. Theriogenology 65:1435–1441

    PubMed  CAS  Google Scholar 

  • Meneghetti M, Sa Filho OG, Peres RFG, Lamb GC, Vasconcelos JLM (2009) Fixed-time artificial insemination with estradiol and progesterone for Bos indicus cows I: basis for development of protocols. Theriogenology 72:179–189

    PubMed  CAS  Google Scholar 

  • Merk FB, Botticelli CR, Albright JT (1972) An intercellular response to estrogen by granulosa cells in the rat ovary; an electron microscope study. Endocrinology 90:992–1007

    PubMed  CAS  Google Scholar 

  • Mermillod P, Ossaid B, Cognie Y (1999) Aspects of follicular and oocyte maturation that affect the developmental potential of embryos. J Reprod Fertil Suppl 54:449–460

    PubMed  CAS  Google Scholar 

  • Miller BG, Moore NW, Murphy L, Stone GM (1977) Early pregnancy in the ewe. Effects of oestradiol and progesterone on uterine metabolism and on embryo survival. Aust J Biol Sci 30:379–388

    Google Scholar 

  • Minami N, Suzuki T, Tsukamoto S (2007) Zygotic gene activation and maternal factors in mammals. J Reprod Dev 53:707–715

    PubMed  CAS  Google Scholar 

  • Miyoshi N, Barton SC, Kaneda M, Hajkova P, Surani MA (2006) The continuing quest to comprehend genomic imprinting. Cytogenet Genome Res 113:6–11

    PubMed  CAS  Google Scholar 

  • Moore NW (1985) The use of embryo transfer and steroid hormone replacement therapy in the study of prenatal mortality. Theriogenology 23:121–128

    CAS  Google Scholar 

  • Morton B, Harrigan-Lum J, Albagli L, Jooss T (1974) The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem Biophys Res Commun 56:372–379

    PubMed  CAS  Google Scholar 

  • Morton BE, Sagadraca R, Fraser C (1978) Sperm motility within the mammalian epididymis: species variation and correlation with free calcium levels in epididymal plasma. Fertil Steril 29:695–698

    PubMed  CAS  Google Scholar 

  • Morton BE, Fraser CF, Sagadraca R (1979) Initiation of hamster sperm motility from quiescence: effect of conditions upon flagellation and respiration. Fertil Steril 32:822–827

    PubMed  CAS  Google Scholar 

  • Murber A, Fancsovits P, Ledo N, Gilan ZT, Rigo J Jr, Urbancsek J (2009) Impact of GnRH analogues on oocyte/embryo quality and embryo development in in vitro fertilization/ intracytoplasmic sperm injection cycles: a case control study. Reprod Biol Endocrinol 7:103

    PubMed  Google Scholar 

  • Mussard ML, Burke CR, Day ML (2003) Ovarian follicle maturity at induced ovulation influences fertility in cattle. Proceedings Annual Conference of the Society for Theriogenology. pp 179–185

  • Mussard ML, Burke CR, Behlke EJ, Gasser CL, Day ML (2007) Influence of premature induction of a luteinizing hormone surge with gonadotropin-releasing hormone on ovulation, luteal function, and fertility in cattle. J Anim Sci 85:937–943

    PubMed  CAS  Google Scholar 

  • Nagyova E, Nemcova L, Prochazka R (2009) Expression of tumor necrosis factor alpha-induced protein 6 messenger RNA in porcine preovulatory ovarian follicles. J Reprod Dev 55:231–235

    PubMed  CAS  Google Scholar 

  • NAHMS (2008) Part II. Reference of beef cow-calf management practices in the United States.http://www.aphis.usda.gov/vs/ceah/ncahs/nahms/beefcowcalf/beef0708/Beef0708_PartII.pdf Accessed November 17, 2009

  • Nakamura TJ, Moriya T, Inoue S, Shimazoe T, Watanabe S, Ebihara S, Shinohara K (2005) Estrogen differentially regulates expression of per1 and per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J Neurosci Res 82:622–630

    PubMed  CAS  Google Scholar 

  • Nilsson L, Wilkland M, Hamberger L, Hillensjo T, Chari S, Sturm G, Daume E (1985) Simplification of the method of in virto fertilization: sonographic measurements of follicular diameter as the sole index of follicular maturity. J Assist Reprod Genet 2:17–22

    CAS  Google Scholar 

  • Nothnick WB, Healy C (2010) Estrogen induces distinct patterns of microRNA expression within the mouse uterus. Reprod Sci 17:987–994

    PubMed  CAS  Google Scholar 

  • Nothnick WB, Healy C, Hong X (2010) Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1. Endocrinology 37:265–273

    CAS  Google Scholar 

  • Noyes RW, Adams CE, Walton A (1959) The passage of spermatozoa through the genital tract of female rabbits after ovariectomy and oestrogen treatment. J Endocrinol 18:165–174

    PubMed  CAS  Google Scholar 

  • O’Neill MJ (2005) The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum Mol Genet 14(Spec. 1):R113–R120

    PubMed  Google Scholar 

  • Obata Y, Kono T (2002) Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J Biol Chem 277:5285–5289

    PubMed  CAS  Google Scholar 

  • Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM (2009) MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol 23:265–275

    PubMed  Google Scholar 

  • Oussaid B, Mariana JC, Poulin N, Fontaine J, Lonergan P, Beckers JF, Cognie Y (1999) Reduction of the developmental competence of sheep oocytes by inhibition of LH pulses during the follicular phase with a GnRH antagonist. J Reprod Fertil 117:71–77

    PubMed  CAS  Google Scholar 

  • Parrish JJ, Susko-Parrish JL, First NL (1989) Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular ph. Biol Reprod 41:683–699

    PubMed  CAS  Google Scholar 

  • Patel OV, Bettegowda A, Ireland JJ, Coussens PM, Lonergan P, Smith GW (2007) Functional genomics studies of oocyte competence: evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes. Reproduction 133:95–106

    PubMed  CAS  Google Scholar 

  • Pennetier S, Uzbekova S, Perreau C, Papillier P, Mermillod P, Dalbies-Tran R (2004) Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos. Biol Reprod 71:1359–1366

    PubMed  CAS  Google Scholar 

  • Pennetier S, Uzbekova S, Guyader-Joly C, Humblot P, Mermillod P, Dalbies-Tran R (2005) Genes preferentially expressed in bovine oocytes revealed by subtractive and suppressive hybridization. Biol Reprod 73:713–720

    PubMed  CAS  Google Scholar 

  • Peres RFG, Junior IC, Sa Filho OG, Nogueira GP, Vasconcelos JLM (2009) Fixed-time artificial insemination with estradiol and progesterone for Bos indicus cows I: basis for development of protocols. Theriogenology 72:179–189

    PubMed  Google Scholar 

  • Perry GA, Perry BL (2008a) Effect of preovulatory concentrations of estradiol and initiation of standing estrus on uterine pH in beef cows. Domest Anim Endocrinol 34:333–338

    PubMed  CAS  Google Scholar 

  • Perry GA, Perry BL (2008b) Effects of standing estrus and supplemental estradiol on changes in uterine pH during a fixed-time artificial insemination protocol. J Anim Sci 86:2928–2935

    PubMed  CAS  Google Scholar 

  • Perry GA, Smith MF, Lucy MC, Green JA, Parks TE, MacNeil MD, Roberts AJ, Geary TW (2005) Relationship between follicle size at insemination and pregnancy success. Proc Natl Acad Sci USA 102:5268–5273

    PubMed  CAS  Google Scholar 

  • Perry GA, Smith MF, Roberts AJ, MacNeil MD, Geary TW (2007) Relationship between size of the ovulatory follicle and pregnancy success in beef heifers. J Anim Sci 85:684–689

    PubMed  CAS  Google Scholar 

  • Perry GA, Perry BL, Cushman RA (2009) Association between preovulatory concentrations of estradiol and expression of uterine milk protein precursor, inhibin beta A, period 1, proenkephalin, and receptors for oxytocin, progesterone, and estradiol. Biol Reprod 79(Suppl. 1): Abstr. 308

    Google Scholar 

  • Pritts EA, Atwood AK (2002) Luteal phase support in infertility treatment: a meta-analysis of the randomized trials. Hum Reprod 17:2287–2299

    PubMed  CAS  Google Scholar 

  • Pursley JR, Mee MO, Wiltbank MC (1995) Synchronization of ovulation in dairy cows using pgf2a and gnrh. Theriogenology 44:915–923

    PubMed  CAS  Google Scholar 

  • Richards JS, Ireland JJ, Rao MC, Bernath GA, Midgley AR, Reichert LE (1976) Ovarian follicular development in the rat: hormone receptor regulation by estradiol, follicle stimulating hormone and luteinizing hormone. Endocrinology 99:1562–1570

    PubMed  CAS  Google Scholar 

  • Robert C, Gagne D, Bousquet D, Barnes FL, Sirard MA (2001) Differential display and suppressive subtractive hybridization used to identify granulosa cell messenger rna associated with bovine oocyte developmental competence. Biol Reprod 64:1812–1820

    PubMed  CAS  Google Scholar 

  • Sa Filho OG, Meneghetti M, Peres RFG, Lamb GC, Vasconcelos JLM (2009) Fixed-time artificial insemination with estradiol and progesterone for Bos indicus cows II: strategies and factors affecting fertility. Theriogenology 72:210–218

    PubMed  CAS  Google Scholar 

  • Sa Filho OG, Crespilho AM, Santos JEP, Perry GA, Baruselli PS (2010) Ovarian follicle diameter at timed insemination and estrous response influence likelihood of ovulation and pregnancy after estrous synchronization with progesterone or progestin-based protocols in suckled Bos indicus cows. Anim Reprod Sci 120:23–30

    PubMed  CAS  Google Scholar 

  • Sartori R, Fricke PM, Ferreira JCP, Ginther OJ, Wiltbank MC (2001) Follicular deviation and acquisition of ovulatory capacity in bovine follicles. Biol Reprod 65:1403–1409

    PubMed  CAS  Google Scholar 

  • Schackmann RW, Christen R, Shapiro BM (1981) Membrane potential depolarization and increased intracellular ph accompany the acrosome reaction of sea urchin sperm. Proc Natl Acad Sci U S A 78:6066–6070

    PubMed  CAS  Google Scholar 

  • Schiefelbein AK, Perry BL, Perry GA (2008) Association between preovulatory concentrations of estradiol and expression of uterine receptors for oxytocin, progesterone, and estradiol. Biol Reprod 78(Suppl. 1):Abstr. 362

    Google Scholar 

  • Seidel GE (1995) Reproductive biotechnologies for profitable beef production. In Proc. Beef Improvement Federation. p 28, Sheridan, WY

  • Sheehan KL, Casper RF, Yen SSC (1982) Luteal phase defects induced by an agonist of luteinizing hormone-releasing factor: a model for fertility control. Science 215:170

    PubMed  CAS  Google Scholar 

  • Sherman BM, Korenman SG (1974) Measurement of plasma LH, FSH, estradiol and progesterone in disorders of the human menstrual cycle: the short luteal phase. J Clin Endocrinol Metab 38:89

    PubMed  CAS  Google Scholar 

  • Sirard MA, Richard F, Blondin P, Robert C (2006) Contribution of the oocyte to embryo quality. Theriogenology 65:126–136

    PubMed  Google Scholar 

  • Soliman S, Daya S, Collins J, Hughes EG (1994) The role of luteal phase support in infertility treatment: a meta-analysis of random trials. Fertil Steril 61:1068–1076

    PubMed  CAS  Google Scholar 

  • Spencer TE, Bazer FW (2002) Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front Biosci 7:1879–1898

    Google Scholar 

  • Spencer TE, Johnson GA, Burghardt RC, Bazer FW (2004) Progesterone and placental hormone actions on the uterus: insights from domestic animals. Biol Reprod 71:2–10

    PubMed  CAS  Google Scholar 

  • Spencer TE, Johnson GA, Bazer FW, Burghardt RC (2007) Fetal-maternal interactions during the establishment of pregnancy in ruminants. J Reprod Fertil 64:379–396

    CAS  Google Scholar 

  • Speroff L, Glass RH, Kase NG (1994) Female infertility. Clinical gynecologic endocrinology and infertility. Williams and Wilkins, Baltimore, Ch 26

    Google Scholar 

  • Starbuck GR, Darwash AO, Mann GE, Lamming GE (2001) The detection and treatment of post insemination progesterone insufficiency in dairy cows. BSAS Occas Publ 26:447–450

    Google Scholar 

  • Stevenson JS, Portaluppi MA, Tenhouse DE, Lloyd A, Eborn DR, Kacuba S, DeJarnette JM (2007) Interventions after artificial insemination: conception rates, pregnancy survival, and ovarian response to gonadotropin-releasing hormone, human chorionic gonadotropin, and progesterone. J Dairy Sci 90:331–340

    PubMed  CAS  Google Scholar 

  • Stevenson JS, Tiffany SM, Inskeep EK (2008) Maintenance of pregnancy in dairy cattle after treatment with human chorionic gonadotropin or gonadotropin-releasing hormone. J Dairy Sci 91:3092–3101

    PubMed  CAS  Google Scholar 

  • Stone GM, Murphy L, Miller BG (1978) Hormone receptor levels and metabolic activity in the uterus of the ewe: regulation by oestradiol and progesterone. Aust J Biol Sci 31:395–403

    PubMed  CAS  Google Scholar 

  • Stouffer RL, Hodgen GD (1980) Induction of luteal phase defects in rhesus monkeys by follicular fluid administration at the onset of the menstrual cycle. J Clin Endocrinol Metab 51:669

    PubMed  CAS  Google Scholar 

  • Stouffer RL, Hodgen GD, Ottobre AC, Christian CD (1984) Follicular fluid treatment during the follicular versus luteal phase of the menstrual cycle: effects on corpus luteum function. J Clin Endocrinol Metab 58:1027–1033

    PubMed  CAS  Google Scholar 

  • Stronge AJH, Sreenan JM, Diskin MG, Mee JF, Kenny DA, Morris DG (2005) Post insemination milk progesterone concentration and embryo survival in dairy cows. Theriogenology 64:1212–1224

    PubMed  CAS  Google Scholar 

  • Su YQ, Sugiura K, Eppig JJ (2009) Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 27:32–42

    PubMed  CAS  Google Scholar 

  • Teissier MP, Chable H, Paulhac S, Aubard Y (2000) Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod 15(12):2471–2477

    PubMed  CAS  Google Scholar 

  • Tycko B, Morison IM (2002) Physiological functions of imprinted genes. J Cell Physiol 9999:1–15

    Google Scholar 

  • Vasconcelos JL, Silcox RW, Rosa GJ, Pursley JR, Wiltbank MC (1999) Synchronization rate, size of the ovulatory follicle, and pregnancy rate after synchronization of ovulation beginning on different days of the estrous cycle in lactating dairy cows. Theriogenology 52:1067–1078

    PubMed  CAS  Google Scholar 

  • Vasconcelos JLM, Sartori R, Oliveira HN, Guenther JG, Wiltbank MC (2001) Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology 56:307–314

    PubMed  CAS  Google Scholar 

  • Verona RI, Mann MR, Bartolomei MS (2003) Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 19:237–259

    PubMed  CAS  Google Scholar 

  • Waldmann A, Kurykin J, Jaakma U, Kaart T, Aidnik M, Jalakas M, Majas L, Padrik P (2006) The effects of ovarian function on estrus synchronization with PGF in dairy cows. Theriogenology 66:1364–1374

    PubMed  CAS  Google Scholar 

  • Wang XF, Yu MK, Lam SY, Leung KM, Jiang JL, Leung PS, Ko WH, Leung PY, Chew SBC, Liu CQ, Tse CM, Chan HC (2003) Expression, immunolocalization, and functional activity of na+/h+ exchanger isoforms in mouse endometrial epithelium. Biol Reprod 68:302–308

    PubMed  CAS  Google Scholar 

  • Warburton D, Fraser FC (1964) Spontaneous abortion risks in man: data from reproductive histories collected in a medical genetics unit. Am J Hum Genet 16(1):1–25

    PubMed  CAS  Google Scholar 

  • Watson AJ (2007) Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J Anim Sci 83:E1–E3

    Google Scholar 

  • Wilks JW, Hodgen GD, Ross GT (1976) Luteal phase defects in the rhesus monkeys: the significance of serum FSH:LH ratio. J Clin Endocrinol Metab 43:1261

    PubMed  CAS  Google Scholar 

  • Wong PY, Lee WM, Tsang AY (1981) The effects of extracellular sodium on acid release and motility initiation in rat caudal epididymal spermatozoa in vitro. Exp Cell Res 131:97–104

    PubMed  CAS  Google Scholar 

  • Wyker R, Howards SS (1977) Micropuncture studies on the motility of rete testis and epididymal spermatozoa. Fertil Steril 28:108–112

    PubMed  CAS  Google Scholar 

  • Yding Anderson C (1993) Characteristics of human follicular fluid associated with successful conception after in vitro fertilization. J Clin Endocrinol Metab 77:1227–1234

    Google Scholar 

  • Zelinski MB, Noel P, Weber DW, Stormshak F (1982) Characterization of cytoplasmic progesterone receptors in the bovine endometrium during proestrus and diestrus. J Anim Sci 55:376–383

    PubMed  CAS  Google Scholar 

  • Zelinski-Wooten MB, Hess DL, Baughman WL, Molskness TA, Wole DP, Stouffer RL (1993) Administration of an aromatase inhibitor during the late follicular phase of gonadotropin treated cycles in rhesus monkeys: effects on follicle development, oocyte maturation, and subsequent luteal function. J Clin Endocrinol Metab 76:988–995

    PubMed  CAS  Google Scholar 

  • Zhang M, Ouyang H, Xia G (2009) The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol Hum Reprod 15:399–409

    PubMed  Google Scholar 

  • Zhuang L, Adashi EY, Hsueh AJW (1982) Direct enhancement of gonadotropin-stimulated ovarian estrogen biosynthesis by estrogen and clomiphene citrate. Endocinology 110:2219–2221

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohler, K.G., Geary, T.W., Atkins, J.A. et al. Follicular determinants of pregnancy establishment and maintenance. Cell Tissue Res 349, 649–664 (2012). https://doi.org/10.1007/s00441-012-1386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1386-8

Keywords

Navigation