Skip to main content

Advertisement

Log in

Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in skeletal and dental hypomineralization and severe neurological symptoms. TNAP is expressed in the synaptic cleft and the node of Ranvier in normal adults. Using TNAP knockout (KO) mice (Akp2-/-), we studied synaptogenesis and myelination with light- and electron microscopy during the early postnatal days. Ablation of TNAP function resulted in a significant decrease of the white matter of the spinal cord accompanied by ultrastructural evidence of cellular degradation around the paranodal regions and a decreased ratio and diameter of the myelinated axons. In the cerebral cortex, myelinated axons, while present in wild-type, were absent in the Akp2 -/- mice and these animals also displayed a significantly increased proportion of immature cortical synapses. The results suggest that TNAP deficiency could contribute to neurological symptoms related to myelin abnormalities and synaptic dysfunction, among which epilepsy, consistently present in the Akp2 -/- mice and observed in severe cases of hypophosphatasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  • Amadasi A, Bertoldi M, Contestabile R, Bettati S, Cellini B, di Salvo ML, Borri-Voltattorni C, Bossa F, Mozzarelli A (2007) Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents. Curr Med Chem 14:1291–1324

    Article  PubMed  CAS  Google Scholar 

  • Balasubramaniam S, Bowling F, Carpenter K, Earl J, Chaitow J, Pitt J, Mornet E, Sillence D, Ellaway C (2010) Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5′-phosphate availability. J Inherit Metab Dis

  • Barna J, Hanics J, Xiao JS, Fonta C, Négyessy L (2009a) Ultrastructural studies of the CNS of TNAP-knock out mice. 12th Meeting of the Hungarian Neuroscience Society, Budapest (Hungary). P215

  • Barna J, Hanics J, Xiao JS, Millan JL, Fonta C, Négyessy L (2009b) Ultrastructural studies of the CNS of TNAP-knock out mice. Annual meeting Society for Neuroscience. Chicago, III., 634.14

  • Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Burgi S, Sergi C, Ryan L, Ericson KL, Whyte MP, Hogler W (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T > C, p.M226T; c.1112C > T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661

    Article  PubMed  CAS  Google Scholar 

  • Bossi M, Hoylaerts MF, Millan JL (1993) Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. J Biol Chem 268:25409–25416

    PubMed  CAS  Google Scholar 

  • Brun-Heath I, Ermonval M, Chabrol E, Xiao J, Palkovits M, Lyck R, Miller F, Couraud PO, Mornet E, Fonta C (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343:521–536

    Article  PubMed  CAS  Google Scholar 

  • Butt AM (2006) Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia 54:666–675

    Article  PubMed  Google Scholar 

  • Coffey JC, McDermott KW (1997) The regional distribution of myelin oligodendrocyte glycoprotein (MOG) in the developing rat CNS: an in vivo immunohistochemical study. J Neurocytol 26:149–161

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Hernandez M, Gomez-Ramos A, Rubio A, Gomez-Villafuertes R, Naranjo JR, Miras-Portugal MT, Avila J (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285:32539–32548

    Article  PubMed  CAS  Google Scholar 

  • Diez-Zaera M, Diaz-Hernandez JI, Hernandez-Alvarez E, Zimmermann H, Diaz-Hernandez M, Miras-Portugal MT (2011) Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 22:1014–1024

    Article  PubMed  CAS  Google Scholar 

  • Ermonval M, Baudry A, Baychelier F, Pradines E, Pietri M, Oda K, Schneider B, Mouillet-Richard S, Launay JM, Kellermann O (2009) The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells. PLoS One 4:e6497

    Article  PubMed  Google Scholar 

  • Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. J Microsc 218:52–61

    Article  PubMed  CAS  Google Scholar 

  • Fields RD (2010) Neuroscience. Change in the brain's white matter. Science 330:768–769

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  • Fonta C, Imbert M (2002) Vascularization in the primate visual cortex during development. Cereb Cortex 12:199–211

    Article  PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–609

    Article  PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486:179–196

    Article  PubMed  Google Scholar 

  • Foran DR, Peterson AC (1992) Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z transgene. J Neurosci 12:4890–4897

    PubMed  CAS  Google Scholar 

  • Friede RL (1966) A quantitative mapping of alkaline phosphatase in the brain of the rhesus monkey. J Neurochem 13:197–203

    Article  PubMed  CAS  Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    PubMed  CAS  Google Scholar 

  • Henthorn PS, Raducha M, Fedde KN, Lafferty MA, Whyte MP (1992) Different missense mutations at the tissue-nonspecific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc Natl Acad Sci USA 89:9924–9928

    Article  PubMed  CAS  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449

    Article  PubMed  CAS  Google Scholar 

  • Jardim LB, Pires RF, Martins CE, Vargas CR, Vizioli J, Kliemann FA, Giugliani R (1994) Pyridoxine-dependent seizures associated with white matter abnormalities. Neuropediatrics 25:259–261

    Article  PubMed  CAS  Google Scholar 

  • Kermer V, Ritter M, Albuquerque B, Leib C, Stanke M, Zimmermann H (2010) Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett 485:208–211

    Article  PubMed  CAS  Google Scholar 

  • Kirksey A, Morre DM, Wasynczuk AZ (1990) Neuronal development in vitamin B6 deficiency. Ann NY Acad Sci 585:202–218

    Article  PubMed  CAS  Google Scholar 

  • Langer D, Ikehara Y, Takebayashi H, Hawkes R, Zimmermann H (2007) The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience 150:863–879

    Article  PubMed  CAS  Google Scholar 

  • Li M, Cui Z, Niu Y, Liu B, Fan W, Yu D, Deng J (2010) Synaptogenesis in the developing mouse visual cortex. Brain Res Bull 81:107–113

    Article  PubMed  Google Scholar 

  • Lott IT, Coulombe T, Di Paolo RV, Richardson EP Jr, Levy HL (1978) Vitamin B6-dependent seizures: pathology and chemical findings in brain. Neurology 28:47–54

    Article  PubMed  CAS  Google Scholar 

  • Mishra SK, Braun N, Shukla V, Fullgrabe M, Schomerus C, Korf HW, Gachet C, Ikehara Y, Sevigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133:675–684

    Article  PubMed  CAS  Google Scholar 

  • Narisawa S, Hasegawa H, Watanabe K, Millan JL (1994) Stage-specific expression of alkaline phosphatase during neural development in the mouse. Dev Dyn 201:227–235

    Article  PubMed  CAS  Google Scholar 

  • Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    Article  PubMed  CAS  Google Scholar 

  • Narisawa S, Wennberg C, Millan JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193:125–133

    Article  PubMed  CAS  Google Scholar 

  • Neary JT, Zimmermann H (2009) Trophic functions of nucleotides in the central nervous system. Trends Neurosci 32:189–198

    Article  PubMed  CAS  Google Scholar 

  • Négyessy L, Takács J, Mogensen J, Divac I, Hámori J (1995) Synaptic reorganisation of the mediodorsal thalamic nucleus in adult rat following chronic prefrontal cortical lesions. J Hirnforsch 36:433–441

    PubMed  Google Scholar 

  • Negyessy L, Xiao J, Kantor O, Kovacs GG, Palkovits M, Doczi TP, Renaud L, Baksa G, Glasz T, Ashaber M, Barone P, Fonta C (2011) Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. Neuroscience 172:406–418

    Article  PubMed  CAS  Google Scholar 

  • Rasband WS (1997-2011) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/

  • Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal development. Trends Neurosci 28:278–283

    Article  PubMed  CAS  Google Scholar 

  • Riquelme PA, Drapeau E, Doetsch F (2008) Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 363:123–137

    Article  PubMed  Google Scholar 

  • Stephens MC, Dakshinamurti K (1975) Brain lipids in pyridoxine-deficient young rats. Neurobiology 5:262–269

    PubMed  CAS  Google Scholar 

  • Stys PK (2011) The axo-myelinic synapse. Trends Neurosci 34:393–400

    Article  PubMed  CAS  Google Scholar 

  • Sugimura K, Mizutani A (1979) Histochemical and cytochemical studies of alkaline phosphatase activity in the synapses of rat brain. Histochemistry 61:123–129

    Article  PubMed  CAS  Google Scholar 

  • Thompson MD, Nezarati MM, Gillessen-Kaesbach G, Meinecke P, Mendoza-Londono R, Mornet E, Brun-Heath I, Squarcioni CP, Legeai-Mallet L, Munnich A, Cole DE (2010) Hyperphosphatasia with seizures, neurologic deficit, and characteristic facial features: five new patients with Mabry syndrome. Am J Med Genet A 152A:1661–1669

    Article  PubMed  Google Scholar 

  • Vardy ER, Kellett KA, Cocklin SL, Hooper NM (2011) Alkaline Phosphatase Is Increased in both Brain and Plasma in Alzheimer's Disease. Neurodegener Dis

  • Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    Article  PubMed  CAS  Google Scholar 

  • Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millan JL (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Whyte M (1995) Hypophosphatasia. In: Scriver CR, Beudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGrawHill, NY, pp 4095–4112

    Google Scholar 

  • Whyte MP, Mahuren JD, Vrabel LA, Coburn SP (1985) Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Invest 76:752–756

    Article  PubMed  CAS  Google Scholar 

  • Whyte MP, Landt M, Ryan LM, Mulivor RA, Henthorn PS, Fedde KN, Mahuren JD, Coburn SP (1995) Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5′-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 95:1440–1445

    Article  PubMed  CAS  Google Scholar 

  • Xiao JS, Negyessy L, Barna J, Renaud L, Millan JL, Fonta C (2006) A role for the bone alkaline phosphatase in cortex myelination. 36th annual meeting Society for Neuroscience. Atlanta, GA, 638.10

  • Xiao JS, Barna J, Negyessy L, Renaud L, Millan JL, Fonta C (2007) Myelin abnormalities in the Akp2 knock-out mice. 5th Int Alkaline Phosphatase Symposium, Huningue, France

  • Zimmermann H (2011) Purinergic signaling in neural development. Semin Cell Dev Biol 22:194–204

    Article  PubMed  CAS  Google Scholar 

  • Zisapel N, Haklai R (1980) Localization of an alkaline phosphatase and other synaptic vesicle proteins. Neuroscience 5:2297–2303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr Myriam Ermonval for fruitful discussion and Tünde Magyar, Magali Philippe and Luc Renaud for technical assistance. We thank Dr Etienne Mornet for his help in genotyping. This study was supported by PHC Egide (Balaton 17341UE), CNRS (PICS 4331), Hypophosphatasie Europe, University of Toulouse (ASUPS and ATUPS) (C.F), the French Embassy in Beijing (J.X), the joint funding by the National Office for Research and Technology (NKTH) and the Hungarian Science and Technology Foundation (TETALAP) (FR-16/2007) (L.N) and also supported in part by grant DE12889 from the National Institutes of Health, USA (J.L.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caroline Fonta or László Négyessy.

Additional information

János Hanics and János Barna equally contributed to data collection and analyses.

Caroline Fonta and László Négyessy equally contributed to all aspects of the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanics, J., Barna, J., Xiao, J. et al. Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain. Cell Tissue Res 349, 459–471 (2012). https://doi.org/10.1007/s00441-012-1455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1455-z

Keywords

Navigation