Skip to main content

Advertisement

Log in

Role of regucalcin in cell nuclear regulation: involvement as a transcription factor

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Regucalcin (RGN/SMP30) was discovered in 1978 as a calcium (Ca2+)-binding protein that contains no EF-hand motif of the Ca2+-binding domain. The name of regucalcin was proposed for this Ca2+-binding protein, which can regulate various Ca2+-dependent enzyme activations in liver cells. The regucalcin gene is localized on the X chromosome. Regucalcin plays a multifunctional role in cell regulation through maintaining intracellular Ca2+ homeostasis and suppressing signal transduction in various cell types. The cytoplasmic regucalcin is translocated into the nucleus and inhibits nuclear Ca2+-dependent and -independent protein kinases and protein phosphatases, Ca2+-activated deoxyribonucleic acid (DNA) fragmentation and DNA and ribonucleic acid (RNA) synthesis. Moreover, overexpression of endogenous regucalcin regulates the gene expression of various proteins that are related to cell proliferation and apoptosis. This review will discuss the role of regucalcin in the regulation of cell nuclear function and an involvement in gene expression as a novel transcription factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ba J, Friedman PA (2004) Calcium-sensing receptor regulation of renal mineral ion transport. Cell Calcium 35:229–237

    Article  PubMed  CAS  Google Scholar 

  • Bachs O, Carafolli E (1995) Calmodulin and calmodulin-binding proteins in liver cell nuclei. J Biol Chem 262:10786–1079

    Google Scholar 

  • Boynton AL, Whitfield JF, MacManus JP (1980) Calmodulin stimulates DNA synthesis by rat liver cells. Biochem Biohys Res Commun 95:745–749

    Article  CAS  Google Scholar 

  • Charollais RH, Buquet C, Mester J (1990) Butyrate blocks the accumulation of CDc2 mRNA in late G1 phase but inhibits both early and late G1 progression in chemically transformed mouse fibroblasts BP-A31. J Cell Physiol 145:46–52

    Article  PubMed  CAS  Google Scholar 

  • Csermely P, Schnaider T, Szanto I (1995) Signalling and transport through the nuclear membrane. Biochim Biophys Acta 1241:425–452

    Article  PubMed  Google Scholar 

  • Curran T (1991) Fos and Jun: Intermediary transcription factors. In: Cohen P, Foulkes JG (eds) The hormonal control of gene transcription. Elservier, New York, pp 295–308

    Chapter  Google Scholar 

  • Fan JM, Ng Y-Y, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY (1999) Transforming growth factor-β regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 56:1455–1467

    Article  PubMed  CAS  Google Scholar 

  • Farber JL (1981) The role of calcium in cell death. Life Sci 29:1289–1295

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Shirasawa T, Uchida K, Maruyama N (1992a) Isolation of cDNA clone encoding rat senescence marker protein-30 (SMP30) and its tissue distribution. Biochim Biophys Acta 1132:297–305

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Uchida K, Maruyama N (1992b) Purification of senescence marker protein-30 (SMP30) and its androgen-independent decrease with age in the rat liver. Biochim Biophys Acta 1116:122–128

    Article  PubMed  CAS  Google Scholar 

  • Hammar EB, Irminger J-G, Richenback K, Parnaud G, Ribaux P, Bosco D, Rouiller DG, Halban PA (2005) Activation of NF-kB by extracellular matrix is involved in apreading and glucose-stimulated insulin secretion of pancreatic beta cells. J Biol Chem 280:30630–30637

    Article  PubMed  CAS  Google Scholar 

  • Hulla JE, Schneider RP (1993) Structure of the rat p53 tumor suppressor gene. Nucleic Acids Res 21:713–717

    Article  PubMed  CAS  Google Scholar 

  • Inagaki S, Misawa H, Yamaguchi M (2000) Role of endogenous regucalcin in protein tyrosine phosphatase regulation in the cloned rat hepatoma cells (H4-II-E). Mol Cell Biochem 213:43–50

    Article  PubMed  CAS  Google Scholar 

  • Inagaki S, Yamaguchi M (2000) Enhancement of protein tyrosine phosphatase activity in the proliferation of cloned rat hepatoma H4-II-E cells: suppressive role of endogenous regucalcin. Int J Mol Med 6:323–328

    PubMed  CAS  Google Scholar 

  • Inagaki S, Yamaguchi M (2001a) Suppressive role of endogenous regucalcin in the enhancement of protein kinase activity with proliferation of cloned rat hepatoma cells (H4-II-E). J Cell Biochem 36:12–18

    Article  Google Scholar 

  • Inagaki S, Yamaguchi M (2001b) Regulatory role of endogenous regucalcin in the enhancement of nuclear deoxyribonucleic acid synthesis with proliferation of cloned rat hepatoma cells (H4-II-E). J Cell Biochem 82:704–711

    Article  PubMed  CAS  Google Scholar 

  • Jones DP, McConkey DJ, Nicotera P, Orrenius S (1989) Calcium- activated DNA fragmentation in rat liver nuclei. J Biol Chem 264:6398–6403

    PubMed  CAS  Google Scholar 

  • Katsumata T, Yamaguchi M (1998) Inhibitory effect of calcium-binding protein regucalcin on protein kinase activity in the nuclei of regenerating rat liver. J Cell Biochem 71:569–576

    Article  PubMed  CAS  Google Scholar 

  • Laurentino SS, Correia S, Cavaco JE, Oliveira PF, de Sousa M, Barros A, Socorro S (2012) Regucalcin, a calcium-binding protein with a role in male reproduction. Mol Hum Reprod 18:161–170

    Article  PubMed  CAS  Google Scholar 

  • Marques R, Maia CJ, Vaz C, Correia S, Socorro S (2013) The diverse roles of calcium-binding protein regucalcin in cell biology: from tissue expression and signalling to disease. Cell Mol Life Sci. doi:10.1007/s00018-013-1323-3

    PubMed  Google Scholar 

  • Meijer L, Borgne A, Mulner O, Chhong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  PubMed  CAS  Google Scholar 

  • Misawa H, Inagaki S, Yamaguchi M (2002) Suppression of cell proliferation and deoxyribonucleic acid synthesis in cloned rat hepatoma H4-II-E cells overexpressing regucalcin. J Cell Biochem 84:143–14

    Article  Google Scholar 

  • Misawa H, Yamaguchi M (2000) The gene of Ca2+-binding protein regucalcin is highly conserved in vertebrate species. Int J Mol Med 6:191–196

    PubMed  CAS  Google Scholar 

  • Mori S, Yamaguchi M (1990) Hepatic calcium-binding protein regucalcin decreases Ca2+/calmodulin-dependent protein kinase activity in rat liver cytosol. Chem Pharm Bull 38:2216–2218

    Article  PubMed  CAS  Google Scholar 

  • Moroianu J, Blobel G (1995) Protein export from the nucleus requires the GTPase Ran and GTP hydrolysis. Proc Natl Acad Sci USA 92:4318–4322

    Article  PubMed  CAS  Google Scholar 

  • Morooka Y, Yamaguchi M (2002) Suppressive effect of endogenous regucalcin on deoxyribonucleic acid synthesis in the nuclei of rat renal cortex. Mol Cell Biochem 229:157–162

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Sawada N, Yamaguchi M (2005) Overexpression of regucalcin suppresses cell proliferation of cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 16:637–664

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Yamaguchi M (2005a) Hormonal regulation on regucalcin mRNA expression in cloned normal rat kidney proximal tubular epithelial NRK52E cells. J Cell Biochem 95:589–597

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yamaguchi M (2005b) Overexpression of regucalcin suppresses apoptotic cell death in cloned normal rat kidney proximal tubular epithelial NRK52E cells: change in apoptosis-related gene expression. J Cell Biochem 96:1274–1285

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yamaguchi M (2006) Overexpression of regucalcin enhances its nuclear localization and suppresses L-type Ca2+ channel and calcium-sensing receptor mRNA expressions in cloned normal rat kidney proximal tubular epithelial NRK52E cells. J Cell Biochem 99:1064–1077

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yamaguchi M (2007) Overexpression of regucalcin suppresses cell response for tumor necrosis factor-α or transforming growth factor-β1 in cloned normal rat kidney proximal tubular epithelial NRK52E cells. J Cell Biochem 100:1178–1190

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yamaguchi M (2008) Nuclear localization of regucalcin is enhanced in culture with protein kinase C activation in cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 21:605–610

    PubMed  CAS  Google Scholar 

  • Nakashima C, Yamaguchi M (2006) Overexpression of regucalcin enhances glucose utilization and lipid production in cloned rat hepatoma H4-II-E cells: Involvement of insulin resistance. J Cell Biochem 99:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • Nakashima C, Yamaguchi M (2007) Overexpression of regucalcin suppresses gene expression of insulin signaling-related proteins in cloned rat hepatoma H4-II-E cells: involvement of insulin resistance. Int J Mol Med 20:709–716

    PubMed  CAS  Google Scholar 

  • Nicotera P, McConkey DJ, Jones DP, Orrenius S (1989) ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci USA 86:453–457

    Article  PubMed  CAS  Google Scholar 

  • Omura M, Yamaguchi M (1998) Inhibition of Ca2+/ calmodulin- dependent phosphatase activity by regucalcin in rat liver cytosol: Involvement of calmoduling binding. J Cell Biochem 71:140–148

    Article  PubMed  CAS  Google Scholar 

  • Omura M, Yamaguchi M (1999) Regulation of protein phosphatase activity by regucalcin localization in rat liver nuclei. J Cell Biochem 75:437–445

    Article  PubMed  CAS  Google Scholar 

  • Pardo JP, Fernandez F (1982) Effect of calcium and calmodulin on RNA synthesis in isolated nuclei from rat liver cells. FEBS Lett 143:157–160

    Article  PubMed  CAS  Google Scholar 

  • Pujol MJ, Soriano M, Alique R, Carafoli E, Bachs O (1989) Effect of alpha-adrenergic blockers on calmodulin associate with the nuclear matrix of rat liver cells during proliferative activation. J Biol Chem 264:18863–18865

    PubMed  CAS  Google Scholar 

  • Shimokawa N, Matsuda Y, Yamaguchi M (1995) Genomic cloning and chromosomal assignment of rat regucalcin gene. Mol Cell Biochem 151:157–163

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa N, Yamaguchi M (1993) Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett 327:251–255

    Article  PubMed  CAS  Google Scholar 

  • Singh SV, Herman-Antosiewice A, Singh AV, Lew KL, Srivastava SK, Kamath R, Brown KD, Zhang L, Baskaran R (2004) Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J Biol Chem 279:25813–25822

    Article  PubMed  CAS  Google Scholar 

  • Sturges MR, Peck LJ (1994) Calcium-dependent inactivation of RNA polymerase III transcription. J Biol Chem 269:5712–5719

    PubMed  CAS  Google Scholar 

  • Tanaka T, Nangaku M, Miyata T, Inagi R, Ohse T, Ingelfinger JR, Fujita T (2004) Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells. J Am Soc Nephrol 15:2320–2333

    Article  PubMed  CAS  Google Scholar 

  • Thiselton DL, McDowall J, Brandau O, Ramser J, d’Esposito F, Bhattacharga SS, Ross MT, Hardcastle AJ, Meindl A (2002) An integrated, functionally annotated gene map of the DXS8026-ELK1 internal on human Xp11.3-Xp11.23: Potential hotspot for neurogenetic disorders. Genomics 79:560–572

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Misawa H, Yamaguchi M (2000) Translocation of regucalcin to rat liver nucleus: Involvement of nuclear protein kinase and protein phosphatase regulation. Int J Mol Med 6:655–660

    PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2001) Suppressive effect of endogenous regucalcin guanosine triphosphatase activity in rat liver nucleus. Biol Pharm Bull 24:958–961

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2002a) Suppressive role of endogenous regucalcin in the enhancement of deoxyribonucleic acid synthesis activity in the nucleus of regenerating rat liver. J Cell Biochem 85:516–52

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2002b) Role of endogenous regucalcin in nuclear regulation of regenerating rat liver: Suppression of the enhanced ribonucleic acid synthesis activity. J Cell Biochem 87:450–457

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2003) Overexpression of regucalcin modulates tumor-related gene expression in cloned rat hepatoma H4- II-E cells. J Cell Biochem 90:619–626

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2004) Role of regucalcin in liver nuclear function: binding of regucalcin to nuclear protein or DNA and modulation of tumor-related gene expression. Int J Mol Med 14:277–281

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Widmann C, Gibson S, Johnson GL (1988) Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 273:7141–7147

    Article  Google Scholar 

  • Yamaguchi M (1992a) A novel Ca2+-binding protein regucalcin and calcium inhibition. Regulatory role in liver cell function. In: Kohama K (ed) Calcium Inhibition., CRC, Boca Raton, pp 19–41

  • Yamaguchi M (1992b) Effect of calcium-binding protein regucalcin on Ca2+ transport system in rat liver nuclei: stimulation of Ca2+ release. Mol Cell Biochem 113:63–70

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function (Review). Int J Mol Med 15:371–389

    PubMed  CAS  Google Scholar 

  • Yamaguchi M (2011a) The transcriptional regulation of regucalcin gene expression. Mol Cell Biochem 346:147–171

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M (2011b) Regucalcin and cell regulation: role as a supressor in cell signaling. Mol Cell Biochem 353:101–137

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Daimon Y (2005) Overexpression of regucalcin suppresses cell proliferation in cloned rat hepatoma H4-II-E cells: Involvement of intracellular signaling factors and cell cycle-related genes. J Cell Biochem 95:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kanayama Y (1996) Calcium-binding protein regucalcin inhibits deoxyribonucleic acid synthesis in the nuclei of regenerating rat liver. Mol Cell Biochem 162:121–126

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Makino R, Shimokawa N (1996) The 5’end seguences and exon organization in rat regucalcin gene. Mol Cell Biochem 165:145–150

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Mori S (1988) Effect of Ca2+ and Zn2+ on 5’-nucleotidase activity in rat liver plasma membranes: Hepatic calcium-binding protein (regucalcin) reverses the Ca2+ effect. Chem Pharm Bull 36:321–325

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Mori S, Kato S (1988) Calcium-binding protein regucalcin is an activator of (Ca2+-Mg2+)-adenosine triphosphatase in the plasma membranes of rat liver. Chem Pharm Bull 36:3532–3539

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Sakurai T (1991) Inhibitory effect of calcium-binding protein regucalcin on Ca2+-activated DNA fragmentation in rat liver nuclei. FEBS Lett 279:281–284

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Sugii K (1981) Properties of calcium-binding protein isolated from the soluble fraction of normal rat liver. Chem Pharm Bull 29:567–570

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Ueoka S (1997) Inhibitory effect of calcium-binding protein regucalcin on ribonucleic acid synthesis in isolated rat liver nuclei. Mol Cell Biochem 173:169–175

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Yamamoto T (1978) Purification of calcium binding substance from soluble fraction of normal rat liver. Chem Pharm Bull 26:1915–1918

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Kanzaki M, Furukawa M, Shibata H, Ozeki M, Kojima I (1999) Involvement of Smad proteins in the differentiation of pancreatic AR42J cells induced by activin A. Diabetologia 42:719–727

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Hanzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-l, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Regucalcin studies of the author were supported by a Grant-in-Aid for Scientific Research (C) No.63571053, No.02671006, No.04671362, No.06672193, No.08672522, No.10672048, No.13672292 and No.17590063 from the Ministry of Education, Science, Sports, and Culture, Japan. The author was also awarded the Bounty of Encouragement Foundation in Pharmaceutical Research and the Bounty of the Yamanouchi Foundation for Research on Metabolic Disorders. This study was also supported by the Foundation for Biomedical Research on Regucalcin.

Author contribution and disclosures

Masayoshi Yamaguchi contributed to the design and conduct of the study, collection, analysis, and interpretation of data and manuscript writing. The author has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M. Role of regucalcin in cell nuclear regulation: involvement as a transcription factor. Cell Tissue Res 354, 331–341 (2013). https://doi.org/10.1007/s00441-013-1665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1665-z

Keywords

Navigation