Skip to main content

Advertisement

Log in

Notch inhibition promotes fetal liver stem/progenitor cells differentiation into hepatocytes via the inhibition of HNF-1β

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In a previous study, the Notch pathway inhibited with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (also called DAPT) was shown to promote the differentiation of fetal liver stem/progenitor cells (FLSPCs) into hepatocytes and to impair cholangiocyte differentiation. The precise mechanism for this, however, was not elucidated. Two mechanisms are possible: Notch inhibition might directly up-regulate hepatocyte differentiation via HGF (hepatocyte growth factor) and HNF (hepatocyte nuclear factor)-4α or might impair cholangiocyte differentiation thereby indirectly rendering hepatocyte differentiation as the dominant state. In this study, HGF and HNF expression was detected after the Notch pathway was inhibited. Although our initial investigation indicated that the inhibition of Notch induced hepatocyte differentiation with an efficiency similar to the induction via HGF, the results of this study demonstrate that Notch inhibition does not induce significant up-regulation of HGF or HNF-4α in FLSPCs. This suggests that Notch inhibition induces hepatocyte differentiation without the influence of HGF or HNF-4α. Moreover, significant down-regulation of HNF-1β was observed, presumably dependent on an impairment of cholangiocyte differentiation. To confirm this presumption, HNF-1β was blocked in FLSPCs and was followed by hepatocyte differentiation. The expression of markers of mature cholangiocyte was impaired and hepatocyte markers were elevated significantly. The data thus demonstrate that the inhibition of cholangiocyte differentiation spontaneously induces hepatocyte differentiation and further suggest that hepatocyte differentiation from FLSPCs occurs at the expense of the impairment of cholangiocyte differentiation, probably being enhanced partially via HNF-1β down-regulation or Notch inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

Abbreviations

CT:

Cycle threshold

CYP:

Cytochrome P450

CK:

Cytokeratin

DAPT:

N-[N-(3, 5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester

DMSO:

Dimethylsulfoxide

ED:

Embryonic day

FLSPCs:

Fetal liver stem/progenitor cells

GAPDH:

D-Glyceraldehyde-3-phosphate dehydrogenase

G6P:

Glucose-6-phosphatase

GGT:

γ-Glutamyltransferase

HGF:

Hepatocyte growth factor

HNF:

Hepatocyte nuclear factor

ICG:

Indocyanine green

LDL:

Low-density lipoprotein

PAS:

Periodic-acid-Schiff’s staining

RNAi:

RNA interference

shRNA:

Short hairpin RNA

References

  • Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467:323–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alpini G, Phillips JO, Vroman B, LaRusso NF (1994) Recent advances in the isolation of liver cells. Hepatology 20:494–514

    Article  CAS  PubMed  Google Scholar 

  • Benne C (2009) Notch increases T/NK potential of human hematopoietic progenitors and inhibits B cell differentiation at a pro-B stage. Stem Cells 27:1676–1685

    Article  CAS  PubMed  Google Scholar 

  • Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132:1133–1149

    Article  CAS  PubMed  Google Scholar 

  • Boucherie S, Decaens C, Verbavatz JM, Grosse B, Erard M, Merola F, Cassio D, Combettes L (2013) Cadmium disorganises the scaffolding of gap and tight junction proteins in the hepatic cell line WIF B9. Biol Cell 105:561–575

    Article  CAS  PubMed  Google Scholar 

  • Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, Sansom OJ, Iredale JP, Lowell S, Roskams T, Forbes SJ (2012) Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 18:572–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bravo P, Bender V, Cassio D (1998) Efficient in vitro vectorial transport of a fluorescent conjugated bile acid analogue by polarized hepatic hybrid WIF-B and WIF-B9 cells. Hepatology 27:576–583

    Article  CAS  PubMed  Google Scholar 

  • Calvo J, BenYoucef A, Baijer J, Rouyez MC, Pflumio F (2012) Assessment of human multi-potent hematopoietic stem/progenitor cell potential using a single in vitro screening system. PLoS One 7:e50495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cassio D, Macias RI, Grosse B, Marin JJ, Monte MJ (2007) Expression, localization, and inducibility by bile acids of hepatobiliary transporters in the new polarized rat hepatic cell lines, Can 3–1 and Can 10. Cell Tissue Res 330:447–460

    Article  CAS  PubMed  Google Scholar 

  • Cau E, Blader P (2009) Notch activity in the nervous system: to switch or not switch? Neural Dev 4:36

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD, Yamatsuji T, Shirakawa Y, Tanaka N, Basma H, Fox IJ, Kobayashi N (2006) Instant hepatic differentiation of human embryonic stem cells using activin A and a deleted variant of HGF. Cell Transplant 15:865–871

    Article  PubMed  Google Scholar 

  • Clotman F (2004) Control of bile duct and hepatic artery development by liver-specific transcription factors. Bull Mem Acad R Med Belg 159:353–357

    CAS  PubMed  Google Scholar 

  • Decaens C, Durand M, Grosse B, Cassio D (2008) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100:387–398

    Article  CAS  PubMed  Google Scholar 

  • Dill MT, Tornillo L, Fritzius T, Terracciano L, Semela D, Bettler B, Heim MH, Tchorz JS (2013) Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 57:1607–1619

    Article  CAS  PubMed  Google Scholar 

  • Egger B, Gold KS, Brand AH (2010) Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137:2981–2987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fabris L, Cadamuro M, Guido M, Spirli C, Fiorotto R, Colledan M, Torre G, Alberti D, Sonzogni A, Okolicsanyi L, Strazzabosco M (2007) Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am J Pathol 171:641–653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, Gores GJ, Dombrowski F, Evert M, Chen X, Willenbring H (2012) Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 122:2911–2915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felszeghy S, Suomalainen M, Thesleff I (2010) Notch signalling is required for the survival of epithelial stem cells in the continuously growing mouse incisor. Differentiation 80:241–248

    Article  CAS  PubMed  Google Scholar 

  • Fre S, Hannezo E, Sale S, Huyghe M, Lafkas D, Kissel H, Louvi A, Greve J, Louvard D, Artavanis-Tsakonas S (2011) Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS One 6:e25785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzales E, Grosse B, Cassio D, Davit-Spraul A, Fabre M, Jacquemin E (2012) Successful mutation-specific chaperone therapy with 4-phenylbutyrate in a child with progressive familial intrahepatic cholestasis type 2. J Hepatol 57:695–698

    Article  PubMed  Google Scholar 

  • Grosse B, Cassio D, Yousef N, Bernardo C, Jacquemin E, Gonzales E (2012) Claudin-1 involved in neonatal ichthyosis sclerosing cholangitis syndrome regulates hepatic paracellular permeability. Hepatology 55:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ (2001) Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21:1393–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heliot C, Desgrange A, Buisson I, Prunskaite-Hyyrylainen R, Shan J, Vainio S, Umbhauer M, Cereghini S (2013) HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development 140:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kaido T, Yamaoka S, Tanaka J, Funaki N, Kasamatsu T, Seto S, Nakamura T, Imamura M (1996) Continuous HGF supply from HGF-expressing fibroblasts transplanted into spleen prevents CCl4-induced acute liver injury in rats. Biochem Biophys Res Commun 218:1–5

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Kokai Y, Chiba H, Yamamoto M, Mochizuki Y, Sawada N (2001) Cx32 but not Cx26 is associated with tight junctions in primary cultures of rat hepatocytes. Exp Cell Res 263:193–201

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Kapoor A, Giel-Moloney M, Rindi G, Leiter AB (2012) Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine. Dev Biol 371:156–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Ning G, Duncan SA (2000) Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev 14:464–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu WH, Li R, Dou KF (2011) Convenient and efficient enrichment of the CD133+ liver cells from rat fetal liver cells as a source of liver stem/progenitor cells. Stem Cell Rev 7:94–102

    Article  PubMed  Google Scholar 

  • Liu WH, Liu ZC, You N, Zhang N, Wang T, Gong ZB, Liu HB, Dou KF (2012a) Several important in vitro improvements in the amplification, differentiation and tracing of fetal liver stem/progenitor cells. PloS one 7:e47346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu WH, Wang X, You N, Tao KS, Wang T, Tang LJ, Dou KF (2012b) Efficient enrichment of hepatic cancer stem-like cells from a primary rat HCC model via a density gradient centrifugation-centered method. PloS one 7:e35720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Wang T, Yan J, Jiagbogu N, Heideman DA, Canfield AE, Alexander MY (2011) HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro. Atherosclerosis 219:440–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lokmane L, Haumaitre C, Garcia-Villalba P, Anselme I, Schneider-Maunoury S, Cereghini S (2008) Crucial role of vHNF1 in vertebrate hepatic specification. Development 135:2777–2786

    Article  CAS  PubMed  Google Scholar 

  • Miura N, Tanaka K (1993) Analysis of the rat hepatocyte nuclear factor (HNF) 1 gene promoter: synergistic activation by HNF4 and HNF1 proteins. Nucleic Acids Res 21:3731–3736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–1381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oertel M, Menthena A, Chen YQ, Shafritz DA (2006) Properties of cryopreserved fetal liver stem/progenitor cells that exhibit long-term repopulation of the normal rat liver. Stem Cells 24:2244–2251

    Article  PubMed  Google Scholar 

  • Overturf K, Al-Dhalimy M, Finegold M, Grompe M (1999) The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am J Pathol 155:2135–2143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pagan R, Martin I, Llobera M, Vilaro S (1997) Growth and differentiation factors inhibit the migratory phenotype of cultured neonatal rat hepatocytes induced by HGF/SF. Exp Cell Res 235:170–179

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Grosse B, Le Tiec B, Nicolas V, Delagebeaudeuf C, Bedda T, Decaens C, Cassio D (2006) How to induce non-polarized cells of hepatic origin to express typical hepatocyte polarity: generation of new highly polarized cell models with developed and functional bile canaliculi. Cell Tissue Res 323:233–243

    Article  PubMed  Google Scholar 

  • Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, Yaniv M (1996) Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 84:575–585

    Article  CAS  PubMed  Google Scholar 

  • Rajvanshi P, Kerr A, Bhargava KK, Burk RD, Gupta S (1996) Studies of liver repopulation using the dipeptidyl peptidase IV-deficient rat and other rodent recipients: cell size and structure relationships regulate capacity for increased transplanted hepatocyte mass in the liver lobule. Hepatology 23:482–496

    Article  CAS  PubMed  Google Scholar 

  • Roelandt P, Antoniou A, Libbrecht L, Van Steenbergen W, Laleman W, Verslype C, Van der Merwe S, Nevens F, De Vos R, Fischer E, Pontoglio M, Lemaigre F, Cassiman D (2012) HNF1B deficiency causes ciliary defects in human cholangiocytes. Hepatology 56:1178–1181

    Article  CAS  PubMed  Google Scholar 

  • Sandhu JS, Petkov PM, Dabeva MD, Shafritz DA (2001) Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol 159:1323–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, Kulik M, Sherwood S, Tallheden T, Cheng N, Furth ME, Reid LM (2007) Human hepatic stem cells from fetal and postnatal donors. J Exp Med 204:1973–1987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schramm U, Fricker G, Buscher HP, Gerok W, Kutz G (1993) Fluorescent derivatives of bile salts. III. Uptake of 7 beta-NBD-NCT into isolated hepatocytes by the transport systems for cholyltaurine. J Lipid Res 34:741–757

    CAS  PubMed  Google Scholar 

  • Schrem H, Klempnauer J, Borlak J (2002) Liver-enriched transcription factors in liver function and development. Part I. The hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev 54:129–158

    Article  CAS  PubMed  Google Scholar 

  • Sorensen EB, Conner SD (2010) Gamma-secretase-dependent cleavage initiates notch signaling from the plasma membrane. Traffic 11:1234–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanimizu N, Miyajima A (2004) Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci 117:3165–3174

    Article  CAS  PubMed  Google Scholar 

  • Tchorz JS, Kinter J, Muller M, Tornillo L, Heim MH, Bettler B (2009) Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 50:871–879

    Article  CAS  PubMed  Google Scholar 

  • Tschaharganeh DF, Chen X, Latzko P, Malz M, Gaida MM, Felix K, Ladu S, Singer S, Pinna F, Gretz N, Sticht C, Tomasi ML, Delogu S, Evert M, Fan B, Ribback S, Jiang L, Brozzetti S, Bergmann F, Dombrowski F, Schirmacher P, Calvisi DF, Breuhahn K (2013) Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology 144:e1512

    Article  Google Scholar 

  • VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud A, Grosse AS, Gumucio DL, Ernst SA, Tsai YH, Dempsey PJ, Samuelson LC (2012) Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139:488–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin S, Rodriguez-Carunchio L, Sole M, Thung S, Stanger BZ, Llovet JM (2012) Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143:e1667

    Article  Google Scholar 

  • Wang T, You N, Tao K, Wang X, Zhao G, Xia N, Li N, Tang L, Liu W, Dou K (2012) Notch is the key factor in the process of fetal liver stem/progenitor cells differentiation into hepatocytes. Dev Growth Differ 54:605–617

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhu R, Bai J, Zhang X, Tian Y, Li X, Peng Z, He Y, Chen L, Ji Q, Chen W, Fang D, Wang R (2011) Numb modulates intestinal epithelial cells toward goblet cell phenotype by inhibiting the Notch signaling pathway. Exp Cell Res 317:1640–1648

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Lin Y, Zhang X, Chen YX, Zeng X, Yue HY, Hou JL, Deng X, Zhang JP, Han ZG, Xie WF (2008) Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4alpha gene. Hepatology 48:1528–1539

    Article  CAS  PubMed  Google Scholar 

  • You N, Liu W, Zhong X, Ji R, Zhang M, You H, Dou K, Tao K (2012) Tg737 inhibition results in malignant transformation in fetal liver stem/progenitor cells by promoting cell-cycle progression and differentiation arrest. Mol Carcinog 51:659–673

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZR, Kobayashi N, Kohsaka T (2006) Human Jagged 1 mutants cause liver defect in Alagille syndrome by overexpression of hepatocyte growth factor. J Mol Biol 356:559–568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Peng Luo (Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, China) and Fuqing Zhang, Nan You, and Xing Wang (Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, China) for substantial help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-hui Liu or Li-jun Tang.

Additional information

Tao Wang, Tao Chen, Hong-yin Liang, Hong-tao Yan and Ning Lin contributed equally to this work.

The authors declare that they have no competing interests.

This work was supported by the Chinese National Natural Science Foundation (grant nos. 81030010, 81001695, 81072179, 81170419 and 81302168), Science Plan Program of Sichuan Province (grant no. 2013JY0046) and Science Fund of Chengdu Military General Hospital (grant no. 424121 J2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chen, T., Liang, Hy. et al. Notch inhibition promotes fetal liver stem/progenitor cells differentiation into hepatocytes via the inhibition of HNF-1β. Cell Tissue Res 357, 173–184 (2014). https://doi.org/10.1007/s00441-014-1825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1825-9

Keywords

Navigation