Skip to main content

Advertisement

Log in

Increased osteogenesis in osteoporotic bone marrow stromal cells by overexpression of leptin

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Osteoporosis leads to increased bone fractures and net bone loss, in part because of the dysfunction of bone marrow stromal cells (BMSCs). Leptin is an adipokine that plays important roles in many biological processes, including the regulation of the actions of mesenchymal stem cells. Our aim is to investigate the osteogenic effects of leptin in osteoporotic BMSCs in vitro and in vivo. The leptin gene was transferred into BMSCs isolated from osteoporotic rats by using recombinant adenoviruses. Once the gene and protein expression of leptin had been confirmed, MTT assays were performed; leptin overexpression was confirmed not to affect the viability of osteoporotic BMSCs. However, alkaline phosphatase (ALP) activity measurements, Alizarin red staining and analyses by quantitative real-time reverse transcription with the polymerase chain reaction revealed that leptin upregulated ALP activity, mineral deposition and the mRNA levels of runt-related transcription factor 2, ALP and collagen type І. Lastly, the effects of leptin on osteogenic differentiation were assessed in vivo. Cells transfected with leptin exhibited increased osteogenic differentiation and enhanced formation of bone-like structures. This study thus reveals, for the first time, that the overexpression of leptin in osteoporotic BMSCs (1) enhances their capacity to differentiate into osteoblasts and to form bone-like tissue and (2) might be a useful skeletal regenerative therapy in osteoporotic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai Y, Zhang S, Kim KS, Lee JK, Kim KH (1996) Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. J Biol Chem 271:13939–13942

    Article  CAS  PubMed  Google Scholar 

  • Benisch P, Schilling T, Klein-Hitpass L, Frey SP, Seefried L, Raaijmakers N, Krug M, Regensburger M, Zeck S, Schinke T, Amling M, Ebert R, Jakob F (2012) The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 7:e45142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byers BA, Garcia AJ (2004) Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells. Tissue Eng 10:1623–1632

    Article  CAS  PubMed  Google Scholar 

  • Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM (2006) Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells 24:679–685

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Koyama K, Yuan X, Lee Y, Zhou YT, O'Doherty R, Newgard CB, Unger RH (1996) Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc Natl Acad Sci U S A 93:14795–14799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conde J, Scotece M, López V, Gómez R, Lago F, Pino J, Gómez-Reino JJ, Gualillo O (2012) Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes. PLoS One 7:e52533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415

    Article  CAS  PubMed  Google Scholar 

  • Dalle CL, Valenti MT, Zanatta M, Donatelli L, Lo CV (2009) Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum 60:3356–3365

    Article  Google Scholar 

  • Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  CAS  PubMed  Google Scholar 

  • Egermann M, Heil P, Tami A, Ito K, Janicki P, Von Rechenberg B, Hofstetter W, Richards PJ (2010) Influence of defective bone marrow osteogenesis on fracture repair in an experimental model of senile osteoporosis. J Orthop Res 28:798–804

    PubMed  Google Scholar 

  • Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    Article  CAS  PubMed  Google Scholar 

  • Franceschi RT (1999) The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 10:40–57

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Qian Y, Yang F, Wang H, Yu Y (2014) Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo. Eur J Oral Sci 122:190–197

    Article  CAS  PubMed  Google Scholar 

  • Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85:825–836

    Article  CAS  PubMed  Google Scholar 

  • Han G, Jing Y, Zhang Y, Yue Z, Hu X, Wang L, Liang J, Liu J (2010) Osteogenic differentiation of bone marrow mesenchymal stem cells by adenovirus-mediated expression of leptin. Regul Pept 163:107–112

    Article  CAS  PubMed  Google Scholar 

  • Hess R, Pino AM, Rios S, Fernandez M, Rodriguez JP (2005) High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J Cell Biochem 94:50–57

    Article  CAS  PubMed  Google Scholar 

  • Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL (1998) Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res 13:205–217

    Article  CAS  PubMed  Google Scholar 

  • Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209

    Article  CAS  PubMed  Google Scholar 

  • Hu HM, Yang L, Wang Z, Liu YW, Fan JZ, Fan J, Liu J, Luo ZJ (2013) Overexpression of integrin a2 promotes osteogenic differentiation of hBMSCs from senile osteoporosis through the ERK pathway. Int J Clin Exp Pathol 6:841–852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hutmacher DW, Garcia AJ (2005) Scaffold-based bone engineering by using genetically modified cells. Gene 347:1–10

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Wu X, Lin M, Doan N, Xiao Y, Yan F (2010) Application of autologous periosteal cells for the regeneration of class III furcation defects in beagle dogs. Cytotechnology 62:235–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Koshihara Y, Hoshi K, Okawara R, Ishibashi H, Yamamoto S (2003) Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture. J Endocrinol 176:339–348

    Article  CAS  PubMed  Google Scholar 

  • La Cava A, Matarese G (2004) The weight of leptin in immunity. Nat Rev Immunol 4:371–379

    Article  PubMed  Google Scholar 

  • Li N, Jiang Y, Wooley PH, Xu Z, Yang SY (2013) Naringin promotes osteoblast differentiation and effectively reverses ovariectomy-associated osteoporosis. J Orthop Sci 18:478–485

    Article  CAS  PubMed  Google Scholar 

  • Lindtner RA, Tiaden AN, Genelin K, Ebner HL, Manzl C, Klawitter M, Sitte I, Von Rechenberg B, Blauth M, Richards PJ (2014) Osteoanabolic effect of alendronate and zoledronate on bone marrow stromal cells (BMSCs) isolated from aged female osteoporotic patients and its implications for their mode of action in the treatment of age-related bone loss. Osteoporos Int 25:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Liu YL, Emilsson V, Cawthorne MA (1997) Leptin inhibits glycogen synthesis in the isolated soleus muscle of obese (ob/ob) mice. FEBS Lett 411:351–355

    Article  CAS  PubMed  Google Scholar 

  • Meyers VE, Zayzafoon M, Douglas JT, McDonald JM (2005) RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res 20:1858–1866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  CAS  PubMed  Google Scholar 

  • Perinpanayagam H, Zaharias R, Stanford C, Brand R, Keller J, Schneider G (2001) Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts. J Orthop Res 19:993–1000

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  • Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16:247–252

    Article  CAS  PubMed  Google Scholar 

  • Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG, Hjertner O, Gordeladze JO, Drevon CA (2001) Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res 16:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Rios HF, Lin Z, Oh B, Park CH, Giannobile WV (2011) Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 82:1223–1237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez JP, Garat S, Gajardo H, Pino AM, Seitz G (1999) Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem 75:414–423

    Article  CAS  PubMed  Google Scholar 

  • Schallhorn RG (1977) Present status of osseous grafting procedures. J Periodontol 48:570–576

    Article  CAS  PubMed  Google Scholar 

  • Scheller EL, Song J, Dishowitz MI, Soki FN, Hankenson KD, Krebsbach PH (2010) Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells. Stem Cells 28:1071–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheng HH, Zhang GG, Cheung WH, Chan CW, Wang YX, Lee KM, Wang HF, Leung KS, Qin LL (2007) Elevated adipogenesis of marrow mesenchymal stem cells during early steroid-associated osteonecrosis development. J Orthop Surg Res 2:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106–01 BSP). J Biol Chem 270:9420–9428

    Article  CAS  PubMed  Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    Article  PubMed  Google Scholar 

  • Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638

    CAS  PubMed  Google Scholar 

  • Um S, Choi JR, Lee JH, Zhang Q, Seo B (2011) Effect of leptin on differentiation of human dental stem cells. Oral Dis 17:662–669

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Zhou H, Liu G, Zhang P, Fu Y, Gu P, Hou H, Tang T, Fan X (2011) Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration. Biomed Mater 6:015013

    Article  PubMed  Google Scholar 

  • Yan SG, Zhang J, Tu Q, Ye JH, Luo E, Schuler M, Dard MM, Yu Y, Murray D, Cochran DL, Kim SH, Yang P, Chen J (2013) Transcription factor and bone marrow stromal cells in osseointegration of dental implants. Eur Cell Mater 26:263–271

    CAS  PubMed  Google Scholar 

  • Zeadin MG, Butcher MK, Shaughnessy SG, Werstuck GH (2012) Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase 20(GSK)-3beta. Biochem Biophys Res Commun 425:924–930

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Telemaque S, Augustyniak RA, Anderson P, Thomas GD, An J, Wang Z, Newgard CB, Victor RG (2010) Adenovirus-mediated leptin expression normalises hypertension associated with diet-induced obesity. J Neuroendocrinol 22:175–180

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZM, Jiang LS, Jiang SD, Dai LY (2009) Osteogenic potential and responsiveness to leptin of mesenchymal stem cells between postmenopausal women with osteoarthritis and osteoporosis. J Orthop Res 27:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Hu J, Wang S, Sun X, Xia L, Zhang X, Zhang Z, Jiang X (2010) Combination of beta-TCP and BMP-2 gene-modified bMSCs to heal critical size mandibular defects in rats. Oral Dis 16:46–54

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Guan XX, Zhu ZL, Guo J, Huang YC, Hou WW, Yu HY (2010) Caffeine inhibits the viability and osteogenic differentiation of rat bone marrow-derived mesenchymal stromal cells. Br J Pharmacol 161:1542–1552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG (2002) The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 277:23934–23941

    Article  CAS  PubMed  Google Scholar 

  • Zou D, Zhang Z, Ye D, Tang A, Deng L, Han W, Zhao J, Wang S, Zhang W, Zhu C, Zhou J, He J, Wang Y, Xu F, Huang Y, Jiang X (2011) Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1alpha. Stem Cells 29:1380–1390

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Luo or Fuhua Yan.

Additional information

This study was supported by the National Science Foundation of China (no. 81100761, no. 81171470), Science Foundation of Fujian Province (no. 2012 J01348) and the Key Project of Science and Technology Bureau of Jiangsu Province (no. BL2013002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Jiang, J., Luo, K. et al. Increased osteogenesis in osteoporotic bone marrow stromal cells by overexpression of leptin. Cell Tissue Res 361, 845–856 (2015). https://doi.org/10.1007/s00441-015-2167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2167-y

Keywords

Navigation