Skip to main content

Advertisement

Log in

Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Metabolic diseases, such as obesity and diabetes, are a serious burden for the health system. Vascular endothelial growth factor (VEGF)-B has been shown to regulate tissue uptake and accumulation of fatty acids and is thus involved in these metabolic diseases. However, the cell-type-specific expression pattern of Vegfb and its receptor (VEGFR1, gene Flt1) remains unclear. We explore the expression of Vegfb and Flt1 in the murine heart, lung and kidney by utilizing β-galactosidase knock-in mouse models and combining the analysis of reporter gene expression and immunofluorescence microscopy. Furthermore, Flt1 heterozygous mice were analyzed with regard to muscular fatty acid accumulation and peripheral insulin sensitivity. Throughout the heart, Vegfb expression was found in cardiomyocytes with a postnatal ventricular shift corresponding to known changes in energy requirements. Vegfb expression was also found in the pulmonary myocardium of the lung and in renal epithelial cells of the thick ascending limb of Henle’s loop, the connecting tubule and the collecting duct. In all analyzed organs, VEGFR1 expression was restricted to endothelial cells. We also show that reduced expression of VEGFR1 resulted in decreased cardiac fatty acid accumulation and increased peripheral insulin sensitivity, possibly as a result of attenuated VEGF-B/VEGFR1 signaling. Our data therefore support a tightly controlled, paracrine signaling mechanism of VEGF-B to VEGFR1. The identified cell-specific expression pattern of Vegfb and Flt1 might form the basis for the development of cell-type-targeted research models and contributes to the understanding of the physiological and pathological role of VEGF-B/VEGFR1 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aase K, Euler G von, Li X, Ponten A, Thoren P, Cao R, Cao Y, Olofsson B, Gebre-Medhin S, Pekny M, Alitalo K, Betsholtz C, Eriksson U (2001) Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 104:358–364

  • Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227

    Article  CAS  PubMed  Google Scholar 

  • Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM, Townson S, Wells C, Little M, Cummings MC, Hayward NK, Kay GF (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86:E29–E35

    Article  CAS  PubMed  Google Scholar 

  • Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B, Adams RH (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484:110–114

    Article  CAS  PubMed  Google Scholar 

  • Bry M, Kivela R, Holopainen T, Anisimov A, Tammela T, Soronen J, Silvola J, Saraste A, Jeltsch M, Korpisalo P, Carmeliet P, Lemstrom KB, Shibuya M, Yla-Herttuala S, Alhonen L, Mervaala E, Andersson LC, Knuuti J, Alitalo K (2010) Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation 122:1725–1733

    Article  CAS  PubMed  Google Scholar 

  • Devaux Y, Vausort M, Azuaje F, Vaillant M, Lair ML, Gayat E, Lassus J, Ng LL, Kelly D, Wagner DR, Squire IB (2012) Low levels of vascular endothelial growth factor B predict left ventricular remodeling after acute myocardial infarction. J Card Fail 18:330–337

    Article  CAS  PubMed  Google Scholar 

  • Dewerchin M, Carmeliet P (2012) PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med 2:a011056. doi:10.1101/cshperspect.a011056

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijkstra MH, Pirinen E, Huusko J, Kivela R, Schenkwein D, Alitalo K, Yla-Herttuala S (2014) Lack of cardiac and high-fat diet induced metabolic phenotypes in two independent strains of Vegf-b knockout mice. Sci Rep 4:6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eelen G, Cruys B, Welti J, De Bock K, Carmeliet P (2013) Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab 24:589–596

    Article  CAS  PubMed  Google Scholar 

  • Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22:617–625

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35

    CAS  PubMed  Google Scholar 

  • Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  CAS  PubMed  Google Scholar 

  • Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, Meeteren LA van, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yla-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921

  • Hagberg CE, Mehlem A, Falkevall A, Muhl L, Fam BC, Ortsater H, Scotney P, Nyqvist D, Samen E, Lu L, Stone-Elander S, Proietto J, Andrikopoulos S, Sjoholm A, Nash A, Eriksson U (2012) Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 490:426–430

    Article  CAS  PubMed  Google Scholar 

  • Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

    Article  CAS  PubMed  Google Scholar 

  • Hew KW, Keller KA (2003) Postnatal anatomical and functional development of the heart: a species comparison. Birth Defects Res B Dev Reprod Toxicol 68:309–320

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95:9349–9354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho VC, Duan LJ, Cronin C, Liang BT, Fong GH (2012) Elevated vascular endothelial growth factor receptor-2 abundance contributes to increased angiogenesis in vascular endothelial growth factor receptor-1-deficient mice. Circulation 126:741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckle WR, Roche RI (2004) Post-transcriptional control of expression of sFlt-1, an endogenous inhibitor of vascular endothelial growth factor. J Cell Biochem 93:120–132

    Article  CAS  PubMed  Google Scholar 

  • Huusko J, Lottonen L, Merentie M, Gurzeler E, Anisimov A, Miyanohara A, Alitalo K, Tavi P, Yla-Herttuala S (2012) AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol Ther J Am Soc Gene Ther 20:2212–2221

    Article  CAS  Google Scholar 

  • Jeck N, Schlingmann KP, Reinalter SC, Komhoff M, Peters M, Waldegger S, Seyberth HW (2005) Salt handling in the distal nephron: lessons learned from inherited human disorders. Am J Physiol Regul Integr Comp Physiol 288:R782–R795

    Article  CAS  PubMed  Google Scholar 

  • Kaipainen A, Korhonen J, Mustonen T, Hinsbergh VW van, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 92:3566–3570

  • Karpanen T, Bry M, Ollila HM, Seppanen-Laakso T, Liimatta E, Leskinen H, Kivela R, Helkamaa T, Merentie M, Jeltsch M, Paavonen K, Andersson LC, Mervaala E, Hassinen IE, Yla-Herttuala S, Oresic M, Alitalo K (2008) Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ Res 103:1018–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivela R, Bry M, Robciuc MR, Rasanen M, Taavitsainen M, Silvola JM, Saraste A, Hulmi JJ, Anisimov A, Mayranpaa MI, Lindeman JH, Eklund L, Hellberg S, Hlushchuk R, Zhuang ZW, Simons M, Djonov V, Knuuti J, Mervaala E, Alitalo K (2014) VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med 6:307–321

    PubMed  PubMed Central  Google Scholar 

  • Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz J, Farnebo F, Larsson C, Tvrdik T, Weber G, Piehl F (1998) A comparative study of the expression patterns for vegf, vegf-b/vrf and vegf-c in the developing and adult mouse. Biochim Biophys Acta 1398:157–163

    Article  CAS  PubMed  Google Scholar 

  • Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vahakangas E, Korpisalo P, Enholm B, Carmeliet P, Alitalo K, Eriksson U, Yla-Herttuala S (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119:845–856

    Article  PubMed  Google Scholar 

  • Louzier V, Raffestin B, Leroux A, Branellec D, Caillaud JM, Levame M, Eddahibi S, Adnot S (2003) Role of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension. Am J Physiol 284:L926–L937

    CAS  Google Scholar 

  • Makinen T, Olofsson B, Karpanen T, Hellman U, Soker S, Klagsbrun M, Eriksson U, Alitalo K (1999) Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J Biol Chem 274:21217–21222

    Article  CAS  PubMed  Google Scholar 

  • Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A (2013) Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc 8:1149–1154

    Article  PubMed  Google Scholar 

  • Mehlem A, Palombo I, Wang X, Hagberg CE, Eriksson U, Falkevall A (2016) PGC-1alpha coordinates mitochondrial respiratory capacity and muscular fatty acid uptake via regulation of VEGF-B. Diabetes (in press)

  • Mommersteeg MT, Brown NA, Prall OW, Gier-de Vries C de, Harvey RP, Moorman AF, Christoffels VM (2007) Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res 101:902–909

  • Nathan H, Eliakim M (1966) The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts. Circulation 34:412–422

    Article  CAS  PubMed  Google Scholar 

  • Nejsum LN (2005) The renal plumbing system: aquaporin water channels. Cell Mol Life Sci 62:1692–1706

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB (1995) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268:F1023–F1037

    CAS  PubMed  Google Scholar 

  • Olofsson B, Pajusola K, Kaipainen A, Euler G von, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U (1996a) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93:2576–2581

  • Olofsson B, Pajusola K, Euler G von, Chilov D, Alitalo K, Eriksson U (1996b) Genomic organization of the mouse and human genes for vascular endothelial growth factor B (VEGF-B) and characterization of a second splice isoform. J Biol Chem 271:19310–19317

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    Article  CAS  PubMed  Google Scholar 

  • Rieg T, Tang T, Uchida S, Hammond HK, Fenton RA, Vallon V (2013) Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am J Pathol 182:96–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sands M, Howell K, Costello CM, McLoughlin P (2011) Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung. Respir Res 12:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109:227–241

    Article  CAS  Google Scholar 

  • Takata K, Matsuzaki T, Tajika Y, Ablimit A, Hasegawa T (2008) Localization and trafficking of aquaporin 2 in the kidney. Histochem Cell Biol 130:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanstall JC, Gambino A, Jeffery TK, Cahill MM, Bellomo D, Hayward NK, Kay GF (2002) Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension. Cardiovasc Res 55:361–368

    Article  CAS  PubMed  Google Scholar 

  • Wetzel RK, Sweadner KJ (2001) Immunocytochemical localization of Na-K-ATPase alpha- and gamma-subunits in rat kidney. Am J Physiol Renal Physiol 281:F531–F545

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Karin Pettersson and Sofia Wittgren for their excellent technical assistance. They also thank Dr. Colin Niaudet for critical discussion and material supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Eriksson.

Ethics declarations

Conflict of interest

L.M., C.M., I.N., M.Z., A.F. and U.E. are shareholders in a company within the diabetes field. This does not alter the authors’ adherence to all policies of the Cell and Tissue Research journal. All authors declare that no other competing interest exists.

Additional information

This study was supported by the Swedish Heart and Lung Foundation, the Swedish Research Council, Karolinska Institutet and CSL (Melbourne, Australia). L.M. was supported by the Swedish Society for Medical Research (SSMF). C.M. held an EMBO Longterm Fellowship co-funded by the European Commission (EMBOCOFUND2010, GA-210-267146) with support from Marie Curie Actions. C.E.H. is supported by the Swedish Research Council, the Swedish Society for Medical Research (SSMF) and the Wilhelm och Else Stockmanns Stiftelse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 36.5 kb)

ESM 2

(GIF 310 kb)

High resolution image (TIF 16.4 mb)

ESM 3

(GIF 342 kb)

High resolution image (TIF 18.2 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhl, L., Moessinger, C., Adzemovic, M.Z. et al. Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney. Cell Tissue Res 365, 51–63 (2016). https://doi.org/10.1007/s00441-016-2377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2377-y

Keywords

Navigation