Skip to main content

Advertisement

Log in

An incremental Knox test for the determination of the serial interval between successive cases of an infectious disease

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

An estimate of the interval between successive infections is essential for surveillance, control, and modeling of infectious diseases. This paper proposes a method for determining the serial interval when the location and time of onset of illness are known. The theoretical underpinning of this method is the intrinsically spatial nature of disease transmission. Successive infections tend to be closer than unrelated cases of disease and, therefore, exhibit spatial clustering. An incremental Knox type analysis of cases is introduced. Cases occurring at a range of time intervals are examined to determine the serial interval. The significance of clustering is determined using a permutation approach under the null hypothesis of space-time independence. The power of this method is evaluated using an individual level, spatially explicit epidemic simulation. The time increment Knox test is robust to multiple introductions and incomplete sampling. Finally, the increment Knox statistic is used to analyze an outbreak of dengue fever in the city of Florida, Puerto Rico during 1991. Results indicate that the likely interval between successive cases during this outbreak is at least 18–19 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Bailey NTJ (1975) The mathematical theory of infectious disease and its applications. Charles Griffin & Company Ltd, London

    Google Scholar 

  • Baker RD (1996) Testing for space-time clusters of unknown size. J Appl Stat 23:543–554

    Article  Google Scholar 

  • Barton DE, David FN (1966) The random intersection of two graphs. In: David FN (ed) Research papers in statistics, Festschrift for J. Neyman. Wiley, New York, pp 445–459

    Google Scholar 

  • Bian L (2004) A conceptual framework for an individual-based spatially explicit epidemiological model. Environ Plann B Plann Des 31:381–395

    Article  Google Scholar 

  • Cliff A, Haggett P (1982) Methods for the measurement of epidemic velocity from time-series data. Int J Epidemiol 11:82–89

    Article  CAS  Google Scholar 

  • Cliff AD, Haggett P, Ord JK, Versey GR (1981) Spatial diffusion: an historical geography of epidemics in an Island community. Cambridge University Press, Cambridge

    Google Scholar 

  • Dever GEA (2006) Managerial epidemiology: practice, methods, and concepts. Jones and Bartlett Publishers, Sudbury, MA

    Google Scholar 

  • Diggle P, Chetwynd A, Haggkvist R, Morris S (1995) Second-order analysis of space-time clustering. Stat Meth Med Res 4:124–136

    Article  CAS  Google Scholar 

  • Doyle TJ, Glynn MK, Groseclose SL (2002) Completeness of notifiable infectious disease reporting in the United States: an analytical literature review. Am J Epidemiol 155:866–974

    Article  Google Scholar 

  • Endy TP, Chunsuttiwat S, Nisalak A, Libraty DH, Green S, Rothman AL, Vaughn DW, Ennis FA (2002) Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kampaeng Phet, Thailand. Am J Epidemiol 156:40–51

    Article  Google Scholar 

  • Etkind SC (1993) Contact tracing in tuberculosis. In: Reichman LB, Hershfield ES (eds) Tuberculosis: a comprehensive international approach. Marcel Dekker, Inc., New York, pp 275–289

    Google Scholar 

  • Fine PEM (2003) the interval betwen successive cases of an infectious disease. Am J Epidemiol 158:1039–1047

    Article  Google Scholar 

  • Gubler DJ (1988) Dengue. In: Monath TP (ed) The arboviruses: epidemiology and ecology. CRC Press, Inc., Boca Raton, pp 223–260

    Google Scholar 

  • Gubler DJ (1997a) Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever. CABI Publishing, Cambridge, pp 1–22

    Google Scholar 

  • Gubler DJ (1997b) Epidemic dengue/dengue haemorrhagic fever: a global public health problem in the 21st century. In: W.M. Scheld DA, and J.M. Hughes (eds) Emerging Infections. ASM Press, Washington, DC, pp 1–14

  • Gubler DJ, Casta-Velez A (1991) A program for prevention and control of epidemic dengue and dengue hemorrhagic fever in Puerto Rico and the US Virgin Islands. Bull Pan Am Health Organ 25:237–247

    CAS  Google Scholar 

  • Guha-Sapir D, Schimmer B (2005) Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol 2:1

    Article  Google Scholar 

  • Halstead SB (1997) Epidemiology of dengue and dengue hemorrhagic fever. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever. CABI Publishing, Cambridge, pp 23–44

    Google Scholar 

  • Harrington LC, Buonaccorsi JP, Edman JD, Costero A, Kittayapong P, Clark GC, Scott TW (2001) Analysis of survival of young and old Aedes aegypti (Diptera: Culcidae) from Puerto Rico and Thailand. J Med Entomol 38:537–547

    Article  CAS  Google Scholar 

  • Holmes EC (1998) Molecular epidemiology of dengue virus—the time for big science. Trop Med Int Health 3:855–856

    Article  CAS  Google Scholar 

  • Hope Simpson RE (1952) Infectiousness of communicable diseases in the household. Lancet ii:549–554

    Article  Google Scholar 

  • Jacquez GM (1996) A k nearest neighbor test for space-time interaction. Stat Med 15:1935–1949

    Article  CAS  Google Scholar 

  • Knox EG (1964) Detection of space-time interactions. Appl Stat 13:25–29

    Article  Google Scholar 

  • Kulldorff M (2000) Prospective time periodic geographical disease surveillance using a scan statistic. J R Stat Soc A 164:61–72

    Article  Google Scholar 

  • Kulldorff M, Hjalmars U (1999) The Knox method and other tests for space-time interaction. Biometrics 55:544–552

    Article  CAS  Google Scholar 

  • Kuno G (1995) review of the factors modulating dengue transmission. Epidemiol Rev 17:321–335

    CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  • Meade MS, Earickson RJ (2000) Medical geography. The Guilford Press, New York

    Google Scholar 

  • Morrison AC, Getis A, Santiago M, Rigau-Perez JG, Reiter P (1998) Exploratory disease analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J Trop Hyg Med 58:287–298

    CAS  Google Scholar 

  • Naus JI (1965) The distribution of the size of the maximum cluster of points on a line. J Am Stat Assoc 60:532–538

    Article  Google Scholar 

  • PAHO (1994) Dengue and dengue hemorrhagic fever in the Americas: Guidlines for prevention and control. PAHO, Washington, DC

  • Pickles WN (1939) Epidemiology in country practice. John Wright & Sons, Ltd., Bristol, England

    Google Scholar 

  • Reiter P, Gubler DJ (1997) Surveillance and control of urban dengue vectors. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever. CAB International, New York, pp 425–462

    Google Scholar 

  • Rodriguez-Figueroa L, Rigau-Perez JG, Suarez EL, Reiter P (1995) Risk factors for dengue infection during an outbreak in Yanes, Puerto Rico in 1991. Am J Trop Med Hyg 52:496–502

    CAS  Google Scholar 

  • Samuelsson S, Ege P, Berthelsen L, Lind I (1992) An outbreak of serogroup B:15:P1.16 meningococcal disease, Frederiksborg county, Denmark, 1987–9. Epidemiol Infect 108:19–30

    Article  CAS  Google Scholar 

  • Scott TW, Chow E, Strickman D, Kittayapong P, Wurta R, Lorenz L, Edman JD (1993) Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol 30:922–927

    CAS  Google Scholar 

  • Sheppard P, Macdonald W, Tonn R, Grab B (1969) The dynamics of an adult Aedes aegypti in relation to dengue hemorrhagic fever in Bangkok. J Anim Ecol 38:661–702

    Article  Google Scholar 

  • Small PM, Hopewell PC, Singh SP, Paz A, Parsonnet J, Ruston DC, Schecter GF, Daley CL, Schoolnik GK (1994) The epidemiology of tuberculosis in San Francisco—a population-based study using conventional and molecular methods. N Engl J Med 330:1703–1709

    Article  CAS  Google Scholar 

  • Tran A, Deparis X, Dussart P, Morvan J, Rabarison P, Remy F, Polidori L, Gardon J (2004) Dengue spatial and temporal patterns, French Guiana, 2001. Emerg Infect Dis 10:615–621

    Google Scholar 

  • US Census Bureau (2000) PR-99-1 Estimates of the Population of Puerto Rico Municipios, July 1, 1999, and Demographic components of population change: April 1, 1990 to July 1, 1999. US Census Bureau, Washongton, DC

  • Vorndam V, Kuno G (1997) Laboratory diagnosis of dengue virus infections. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever. CAB International, Boca Raton, FL, pp 313–333

    Google Scholar 

  • Ward MP, Carpenter TE (2000) Analysis of time-space clustering in veterinary epidemiology. Prev Vet Med 43:225–237

    Article  CAS  Google Scholar 

  • Watts D, Burke DS, Harrison BA, Whitmire RE, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Hyg Med 36:143–152

    CAS  Google Scholar 

  • Wearing HJ, Rohani P, Keeling MJ (2005) Appropriate models for the management of infectious diseases. PLOS Med 2:e174

    Article  Google Scholar 

  • WHO (2002) Fact sheet No.117, Dengue and dengue haemorrhagic fever. World Health Organization

  • Williams GW (1984) Time-space clustering of disease. In: Cornell RG (ed) Statistical methods for cancer studies. Marcel Dekker, Inc., New York, pp 167–228

    Google Scholar 

Download references

Acknowledgments

I would like to express my appreciation for the funding provided by the National Institutes of Health (AI034533) and the National Science Foundation (BCS-0502020). I would especially like to thank Amy Morrison and Thomas W. Scott for providing the dengue case study data and comments on that portion of the manuscript. I would also like to thank Arthur Getis, Michael F. Goodchild, and two anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Aldstadt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldstadt, J. An incremental Knox test for the determination of the serial interval between successive cases of an infectious disease. Stoch Environ Res Risk Assess 21, 487–500 (2007). https://doi.org/10.1007/s00477-007-0132-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-007-0132-3

Keywords

Navigation