Skip to main content
Log in

Statistical approach to inverse distance interpolation

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Inverse distance interpolation is a robust and widely used estimation technique. Variants of kriging are often proposed as statistical techniques with superior mathematical properties such as minimum error variance; however, the robustness and simplicity of inverse distance interpolation motivate its continued use. This paper presents an approach to integrate statistical controls such as minimum error variance into inverse distance interpolation. The optimal exponent and number of data may be calculated globally or locally. Measures of uncertainty and local smoothness may be derived from inverse distance estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Boman G, Molz FJ, Guven O (1995) An evaluation of interpolation methodologies for generating three-dimensional hydraulic property distributions from measured data. Ground Water 33:247–258

    Article  Google Scholar 

  • Borga M, Vizzaccaro A (1997) On the interpolation of hydrologic variables: formal equivalence of multiquadratic surface fitting and kriging. J Hydrol 195:160–171

    Article  Google Scholar 

  • Brouder SM, Hofmann BS, Morris DK (2005) Mapping soil pH: accuracy of common soil sampling strategies and estimation techniques. Soil Sci Soc Am J 69:427–442

    Article  CAS  Google Scholar 

  • Brus DJ, de Gruijter JJ, Marsman BA, Visschers R, Bregt AK, Breeuwsma A (1996) The performance of spatial interpolation methods and choropleth maps to estimate properties at points: a soil survey case study. Environmetrics 7:1–16

    Article  Google Scholar 

  • Cressie NA (1993) Statistics for spatial data, 2nd edn. Wiley, Ontario

    Google Scholar 

  • Declercq FAN (1996) Interpolation methods for scattered sample data: accuracy, spatial patterns, processing time. Cartogr Geogr Inf Syst 23:128–144

    Article  Google Scholar 

  • Deutsch CV (1993) Kriging in a finite domain. Math Geol 25:41–52

    Article  Google Scholar 

  • Deutsch CV (1994) Kriging with strings of data. Math Geol 26:623–638

    Article  Google Scholar 

  • Deutsch CV (2002) Geostatistical reservoir modeling, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and users guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Dingman SL (1994) Physical hydrology, 1st edn. Macmillan College, New York

    Google Scholar 

  • Diodato N, Ceccarelli M (2005) Interpolation processes using multivariate geostatistics for mapping of climatological precipitation mean in the Sannio Mountains (southern Italy). Earth Surf Process Landf 30:259–268

    Article  Google Scholar 

  • Dirks KN, Hay JE, Stow CD, Harris D (1998) High-resolution studies of rainfall on Norfolk Island part II: interpolation of rainfall data. J Hydrol 208:187–193

    Article  Google Scholar 

  • Duchon J (1976) Interpolation des functions de deux variables suivant le principe de la flexion des plaques minces. Revue Automat Inf Rech Oper 10:5–12

    Google Scholar 

  • Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38:181–200

    Article  Google Scholar 

  • Gallichand J, Marcotte D (1993) Mapping clay content for subsurface drainage in the Nile Delta. Geoderma 58:165–179

    Article  Google Scholar 

  • Gotway CA, Ferguson RB, Hergert GW, Peterson TA (1996) Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Sci Am J 60:1237–1247

    Article  CAS  Google Scholar 

  • Hutchinson MF (1993) On thin plate splines and kriging. In: Tarter ME, Lock MD (eds) Computing and science in statistics. University of California, Berkeley

    Google Scholar 

  • Hodgson ME (1992) Sensitivity of spatial interpolation models to parameter variation: ACSM technical papers—Albuquerque. Am Congr Surv Mapp Bethesda Md 2:113–122

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Journel A (1986) Geostatistics—models and tools for the earth sciences. Math Geol 18:119–140

    Article  Google Scholar 

  • Journel AG, Huijbrogts CJ (1978) Mining geostatistics, 1st edn. Academic Press, London

    Google Scholar 

  • Journel A, Kyriakidis PC, Mao S (2000) Correcting the smoothing effect of estimators: a spectral postprocessor. Math Geol 32:787–813

    Article  Google Scholar 

  • Kravchenko AN (2003) Influence of spatial structure on accuracy of interpolation methods. Soil Sci Soc Am J 67:1564–1571

    Article  CAS  Google Scholar 

  • Kravchenko AN, Boast CW, Bullock DG (1999) Multifractal analysis of soil spatial variability. Agron J 91:1033–1041

    Article  Google Scholar 

  • MacDougall EB (1976) Computer programming for spatial problems, 1st edn. Wiley, New York

    Google Scholar 

  • Morrison JL (1974) Observed statistical trends in various interpolation algorithms useful for first stage interpolation. Can Cartogr 11:142–159

    Google Scholar 

  • Moyeed RA, Papritz A (2002) An empirical comparison of kriging methods for nonlinear spatial point prediction. Math Geol 34:365–386

    Article  CAS  Google Scholar 

  • Mueller TG, Dhanikonda SRK, Pusuluri NB, Karathanasis AD, Mathias KK, Mijatovic B, Sears BG (2005) Optimizing inverse distance weighted interpolation with cross-validation. Soil Sci 170:504–515

    Article  CAS  Google Scholar 

  • Mueller TG, Pusuluri NB, Mathias KK, Cornelius PL, Barnhisel RI, Shearer SA (2004) Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci Soc Am J 68:2042–2047

    Article  CAS  Google Scholar 

  • Nalder IA, Wein RW (1998) Spatial interpolation of climatic normals: test of a new method in the canadian boreal forest. Agric Forest Meteorol 92:211–225

    Article  Google Scholar 

  • Peucker TK (1980) The impact of different mathematical approaches to contouring. Cartographica 17:73–95

    Google Scholar 

  • Rojas-Avellaneda D, Silvan-Cardenas JL (2006) Performance of geostatistical interpolation methods for modeling sampled data with non-stationary mean. SERRA 20:455–467

    Google Scholar 

  • Rouhani S (1986) Comparative study of ground-water mapping technique. Ground Water 24:207–216

    Article  Google Scholar 

  • Schloeder CA, Zimmerman NE, Jacobs MJ (2001) Comparison of methods for interpolating soil properties using limited data. Soil Sci Am J 65:470–479

    Article  CAS  Google Scholar 

  • Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of the 1968 23rd ACM. ACM Press, New York

  • Wahba G (1990) Spline models for observational data. In: CBMS-NSF Regional conference series in applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia, p 169

  • Weber DD, Englund EJ (1992) Evaluation and comparison of spatial interpolators. Math Geol 24:381–391

    Article  Google Scholar 

  • Weber DD, Englund EJ (1994) Evaluation and comparison of spatial interpolators II. Math Geol 26:589–603

    Article  Google Scholar 

  • Weisz R, Fleischer S, Smilowitz Z (1995) Map generation in high-value horticultural integrated pest management: appropriate interpolation methods for site-specific pest management of Colorado Potato Beetle (Coleoptera: Chrysomelidae). J Econ Entomol 88:1650–1657

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by Alberta Ingenuity Foundation, University of Alberta and industry sponsors of the Centre for Computational Geostatistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Babak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babak, O., Deutsch, C.V. Statistical approach to inverse distance interpolation. Stoch Environ Res Risk Assess 23, 543–553 (2009). https://doi.org/10.1007/s00477-008-0226-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-008-0226-6

Keywords

Navigation