Skip to main content

Advertisement

Log in

Combination of sorafenib and angiotensin-II receptor blocker attenuates preneoplastic lesion development in a non-diabetic rat model of steatohepatitis

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Given the well-documented adverse side effects of sorafenib, many sorafenib-treated patients may need the reduced initial dose of the compound, and an alternative sorafenib-based therapy, which exerts similar clinical benefit, is anticipated. An angiostatic therapy with sorafenib is considered one of the promising approaches for chemoprevention of hepatocellular carcinoma. The aim of the current study was to elucidate the combination effect of low dose of sorafenib and angiotensin-II receptor blocker (ARB) on hepatocarcinogenesis, especially in conjunction with angiogenesis.

Methods

The chemopreventive effect on the development of liver preneoplastic lesions, angiogenesis, and several indices was elucidated in rats. We also performed several sets of in vitro experiments to examine the mechanisms involved.

Results

Using a non-diabetic rat model of steatohepatitis with choline deficient l-amino acid-defined diet, sorafenib demonstrated marked inhibition of preneoplastic lesions in a dose dependent manner. Combined treatment with ARB (losartan) at a clinically comparable dose and half dose of sorafenib resulted in the inhibitory effect equivalent to that of common dose of sorafenib along with suppression of hepatic neovascularization and potent angiogenic factor, vascular endothelial growth factor. Furthermore, similar combined inhibitory outcomes were observed in several sets of in vitro studies.

Conclusion

Since the combinatorial treatment using low doses of sorafenib and ARB could sufficiently induce inhibitory effect on the development of preneoplastic lesions at the magnitude similar to the conventional dose of sorafenib, this regimen may provide new strategy for patients intolerant of the usual dose of sorafenib in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.

    Article  PubMed  Google Scholar 

  2. Yasui K, Hashimoto E, Tokushige K, Koike K, Shima T, Kanbara Y, et al. Clinical and pathological progression of non-alcoholic steatohepatitis to hepatocellular carcinoma. Hepatol Res. 2012;42:767–73.

    Article  PubMed  CAS  Google Scholar 

  3. Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21:505–15.

    Article  PubMed  CAS  Google Scholar 

  4. Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012;320:130–7.

    Article  PubMed  CAS  Google Scholar 

  5. Guo RP, Zhong C, Shi M, Zhang CQ, Wei W, Zhang YQ, et al. Clinical value of apoptosis and angiogenesis factors in estimating the prognosis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2006;132:547–55.

    Article  PubMed  CAS  Google Scholar 

  6. Iavarone M, Lampertico P, Iannuzzi F, Manenti E, Donato MF, Arosio E, et al. Increased expression of vascular endothelial growth factor in small hepatocellular carcinoma. J Viral Hepat. 2007;14:133–9.

    Article  PubMed  CAS  Google Scholar 

  7. Dufour JF. Anti-angiogenic therapy for HCC. Minerva Gastroenterol Dietol. 2012;58:81–6.

    PubMed  CAS  Google Scholar 

  8. Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, et al. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst. 2000;92:143–7.

    Article  PubMed  CAS  Google Scholar 

  9. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.

    Article  PubMed  CAS  Google Scholar 

  10. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284:808–12.

    Article  PubMed  CAS  Google Scholar 

  11. Brandvold KA, Neiman P, Ruddell A. Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene. 2000;19:2780–5.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice. Hepatology. 2004;39:1517–24.

    Article  PubMed  CAS  Google Scholar 

  13. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

    Article  PubMed  CAS  Google Scholar 

  14. Romanque P, Piguet AC, Dufour JF. Targeting vessels to treat hepatocellular carcinoma. Clin Sci (Lond). 2008;114:467–77.

    Article  CAS  Google Scholar 

  15. Wu XZ. New strategy of antiangiogenic therapy for hepatocellular carcinoma. Neoplasma. 2008;55:472–81.

    PubMed  CAS  Google Scholar 

  16. Xie B, Wang DH, Spechler SJ. Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig Dis Sci. 2012;57:1122–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  PubMed  CAS  Google Scholar 

  18. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  PubMed  CAS  Google Scholar 

  19. Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer. 2006;42:3127–39.

    Article  PubMed  CAS  Google Scholar 

  20. Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7:475–85.

    Article  PubMed  CAS  Google Scholar 

  21. Yoshiji H, Noguchi R, Ikenaka Y, Kitade M, Kaji K, Tsujimoto T, et al. Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr Med Chem. 2007;14:2749–54.

    Article  PubMed  CAS  Google Scholar 

  22. Nakai Y, Isayama H, Ijichi H, Sasaki T, Sasahira N, Hirano K, et al. Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br J Cancer. 2010;103:1644–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Yoshiji H, Noguchi R, Ikenaka Y, Namisaki T, Kitade M, Kaji K, et al. Losartan, an angiotensin-II type 1 receptor blocker, attenuates the liver fibrosis development of non-alcoholic steatohepatitis in the rat. BMC Res Notes. 2009;2:70.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, et al. Combination of vitamin K(2) and the angiotensin-converting enzyme inhibitor, perindopril, attenuates the liver enzyme-altered preneoplastic lesions in rats via angiogenesis suppression. J Hepatol. 2005;42:687–93.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut. 2003;52:1347–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology. 2002;35:834–42.

    Article  PubMed  CAS  Google Scholar 

  27. Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, et al. Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut. 2005;54:1768–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Saito M, Hamasaki M, Shibuya M. Induction of tube formation by angiopoietin-1 in endothelial cell/fibroblast co-culture is dependent on endogenous VEGF. Cancer Sci. 2003;94:782–90.

    Article  PubMed  CAS  Google Scholar 

  29. Saif MW. Anti-angiogenesis therapy in pancreatic carcinoma. Jop. 2006;7:163–73.

    PubMed  Google Scholar 

  30. Feng YX, Wang T, Deng YZ, Yang P, Li JJ, Guan DX, et al. Sorafenib suppresses postsurgical recurrence and metastasis of hepatocellular carcinoma in an orthotopic mouse model. Hepatology. 2011;53:483–92.

    Article  PubMed  CAS  Google Scholar 

  31. Reiberger T, Angermayr B, Schwabl P, Rohr-Udilova N, Mitterhauser M, Gangl A, et al. Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats. J Hepatol. 2009;51:865–73.

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 2010;53:132–44.

    Article  PubMed  CAS  Google Scholar 

  33. Frachon S, Gouysse G, Dumortier J, Couvelard A, Nejjari M, Mion F, et al. Endothelial cell marker expression in dysplastic lesions of the liver: an immunohistochemical study. J Hepatol. 2001;34:850–7.

    Article  PubMed  CAS  Google Scholar 

  34. Iavarone M, Cabibbo G, Piscaglia F, Zavaglia C, Grieco A, Villa E, et al. Field-practice study of sorafenib therapy for hepatocellular carcinoma: a prospective multicenter study in Italy. Hepatology. 2011;54:2055–63.

    Article  PubMed  CAS  Google Scholar 

  35. Azad NS, Aragon-Ching JB, Dahut WL, Gutierrez M, Figg WD, Jain L, et al. Hand-foot skin reaction increases with cumulative sorafenib dose and with combination anti-vascular endothelial growth factor therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15:1411–6.

    Article  CAS  Google Scholar 

  36. Strumberg D, Awada A, Hirte H, Clark JW, Seeber S, Piccart P, et al. Pooled safety analysis of BAY 43-9006 (sorafenib) monotherapy in patients with advanced solid tumours: is rash associated with treatment outcome? Eur J Cancer. 2006;42:548–56.

    Article  PubMed  CAS  Google Scholar 

  37. Hora C, Romanque P, Dufour JF. Effect of sorafenib on murine liver regeneration. Hepatology. 2011;53:577–86.

    Article  PubMed  CAS  Google Scholar 

  38. Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y. Combination of interferon and angiotensin-converting enzyme inhibitor, perindopril, suppresses liver carcinogenesis and angiogenesis in mice. Oncol Rep. 2005;13:491–5.

    PubMed  CAS  Google Scholar 

  39. Yoshiji H, Noguchi R, Toyohara M, Ikenaka Y, Kitade M, Kaji K, et al. Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma. J Hepatol. 2009;51:315–21.

    Article  PubMed  CAS  Google Scholar 

  40. Kaji K, Yoshiji H, Kitade M, Ikenaka Y, Noguchi R, Yoshii J, et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med. 2008;22:801–8.

    PubMed  CAS  Google Scholar 

  41. Kaji K, Yoshiji H, Ikenaka Y, Noguchi R, Aihara Y, Shirai Y, et al. Possible involvement of angiogenesis in chronic liver diseases: interaction among renin-angiotensin-aldosterone system, insulin resistance and oxidative stress. Curr Med Chem. 2012;19:1889–98.

    Article  PubMed  CAS  Google Scholar 

  42. Paternostro C, David E, Novo E, Parola M. Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases. World J Gastroenterol. 2010;16:281–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Valfre di Bonzo L, Novo E, Cannito S, Busletta C, Paternostro C, Povero D, et al. Angiogenesis and liver fibrogenesis. Histol Histopathol. 2009;24:1323–41.

    PubMed  Google Scholar 

  44. Kitade M, Yoshiji H, Kojima H, Ikenaka Y, Noguchi R, Kaji K, et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology. 2006;44:983–91.

    Article  PubMed  CAS  Google Scholar 

  45. Amarapurkar AD, Amarapurkar DN, Vibhav S, Patel ND. Angiogenesis in chronic liver disease. Ann Hepatol. 2007;6:170–3.

    PubMed  CAS  Google Scholar 

  46. Ueno T, Nakamura T, Torimura T, Sata M. Angiogenic cell therapy for hepatic fibrosis. Med Mol Morphol. 2006;39:16–21.

    Article  PubMed  CAS  Google Scholar 

  47. Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 2010;53:132–44.

    Article  PubMed  CAS  Google Scholar 

  48. Sakaida I, Hironaka K, Uchida K, Suzuki C, Kayano K, Okita K. Fibrosis accelerates the development of enzyme-altered lesions in the rat liver. Hepatology. 1998;28:1247–52.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56:769–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Noguchi R, Yoshiji H, Ikenaka Y, Kaji K, Aihara Y, Shirai Y, et al. Dual blockade of angiotensin-II and aldosterone suppresses the progression of a non-diabetic rat model of steatohepatitis. Hepatol Res 2012.

  51. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34:745–50.

    Article  PubMed  CAS  Google Scholar 

  52. Tsujimoto T, Kawaratani H, Kitazawa T, Hirai T, Ohishi H, Kitade M, et al. Decreased phagocytic activity of Kupffer cells in a rat nonalcoholic steatohepatitis model. World J Gastroenterol. 2008;14:6036–43.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nakae D, Yoshiji H, Mizumoto Y, Horiguchi K, Shiraiwa K, Tamura K, et al. High incidence of hepatocellular carcinomas induced by a choline deficient l-amino acid defined diet in rats. Cancer Res. 1992;52:5042–5.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Yoshiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshiji, H., Noguchi, R., Namisaki, T. et al. Combination of sorafenib and angiotensin-II receptor blocker attenuates preneoplastic lesion development in a non-diabetic rat model of steatohepatitis. J Gastroenterol 49, 1421–1429 (2014). https://doi.org/10.1007/s00535-013-0906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0906-y

Keywords

Navigation