Skip to main content

Advertisement

Log in

Focal disorders of the spine with compensatory deformities: how to define them

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

In this paper, the authors propose classifying the epiphenomenon of spinal deformity in two different categories: structural deformity, when the main driver of the observed deformity is a fixed and stiff alteration of the spinal segments, and compensatory deformity, which includes cases where the observed deformity is due to focal abnormalities. This last category comprises, but is not limited to, spinal stenosis, spondylolisthesis, disc herniation, infection or tumor, hip disease or neurological disease (such as Parkinson’s disease).

Method

Narrative review article.

Results

We analyzed the focal diseases of the spine that may cause a compensatory deformity inducing adaptation in the unaffected part of the spine.

Conclusion

The compensatory mechanisms involved in adaptive deformity represent an attempt to maintain a global alignment, to escape from pain or to control body posture.

Graphical abstract

These slides can be retrieved under Electronic Supplementary material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ames CP, Scheer JK, Lafage V et al (2016) Adult spinal deformity: epidemiology, health impact, evaluation, and management. Spine Deform 4:310–322. https://doi.org/10.1016/j.jspd.2015.12.009

    Article  PubMed  Google Scholar 

  2. Smith JS, Shaffrey CI, Glassman SD et al (2011) Risk-benefit assessment of surgery for adult scoliosis: an analysis based on patient age. Spine (Phila Pa 1976) 36:817–824. https://doi.org/10.1097/brs.0b013e3181e21783

    Article  Google Scholar 

  3. Bridwell KH, Glassman S, Horton W et al (2009) Does treatment (nonoperative and operative) improve the two-year quality of life in patients with adult symptomatic lumbar scoliosis: a prospective multicenter evidence-based medicine study. Spine (Phila Pa 1976) 34:2171–2178. https://doi.org/10.1097/brs.0b013e3181a8fdc8

    Article  Google Scholar 

  4. Schwab F, Patel A, Ungar B et al (2010) Adult spinal deformity postoperative standing imbalance. Spine (Phila Pa 1976) 35:2224–2231. https://doi.org/10.1097/brs.0b013e3181ee6bd4

    Article  Google Scholar 

  5. Bianco K, Norton R, Schwab F et al (2014) Complications and intercenter variability of three-column osteotomies for spinal deformity surgery: a retrospective review of 423 patients. Neurosurg Focus 36:E18. https://doi.org/10.3171/2014.2.FOCUS1422

    Article  PubMed  Google Scholar 

  6. Schwab FJ, Hawkinson N, Lafage V et al (2012) Risk factors for major peri-operative complications in adult spinal deformity surgery: a multi-center review of 953 consecutive patients. Eur Spine J 21:2603–2610. https://doi.org/10.1007/s00586-012-2370-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pichelmann MA, Lenke LG, Bridwell KH et al (2010) Revision rates following primary adult spinal deformity surgery: six hundred forty-three consecutive patients followed-up to twenty-two years postoperative. Spine (Phila Pa 1976) 35:219–226. https://doi.org/10.1097/brs.0b013e3181c91180

    Article  Google Scholar 

  8. Maier S, Smith JS, Schwab F et al (2014) Revision surgery after three-column osteotomy in 335 adult spinal deformity patients: inter-center variability and risk factors. Spine (Phila Pa 1976). https://doi.org/10.1097/brs.0000000000000304

    Google Scholar 

  9. Blondel B, Schwab F, Bess S et al (2013) Posterior global malalignment after osteotomy for sagittal plane deformity: it happens and here is why. Spine (Phila Pa 1976) 38:E394–E401. https://doi.org/10.1097/brs.0b013e3182872415

    Article  Google Scholar 

  10. Puvanesarajah V, Shen FH, Cancienne JM et al (2016) Risk factors for revision surgery following primary adult spinal deformity surgery in patients 65 years and older. J Neurosurg Spine. https://doi.org/10.3171/2016.2.SPINE151345

    PubMed  Google Scholar 

  11. Diebo BG, Henry J, Lafage V, Berjano P (2014) Sagittal deformities of the spine: factors influencing the outcomes and complications. Eur Spine J 24:3–15. https://doi.org/10.1007/s00586-014-3653-8

    Article  Google Scholar 

  12. Roussouly P, Nnadi C (2010) Sagittal plane deformity: an overview of interpretation and management. Eur Spine J 19:1824–1836. https://doi.org/10.1007/s00586-010-1476-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Legaye J (2014) Influence of age and sagittal balance of the spine on the value of the pelvic incidence. Eur Spine J 23:1394–1399. https://doi.org/10.1007/s00586-014-3207-0

    Article  Google Scholar 

  14. Cecchinato R, Redaelli A, Martini C et al (2017) Long fusions to S1 with or without pelvic fixation can induce relevant acute variations in pelvic incidence: a retrospective cohort study of adult spine deformity surgery. Eur Spine J. https://doi.org/10.1007/s00586-017-5154-z

    Google Scholar 

  15. Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34:E599–E606. https://doi.org/10.1097/brs.0b013e3181aad219

    Article  Google Scholar 

  16. Barrey C, Roussouly P, Le Huec JC et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22:834–841. https://doi.org/10.1007/s00586-013-3030-z

    Article  PubMed Central  Google Scholar 

  17. Lamartina C, Berjano P (2014) Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J 23:1177–1189. https://doi.org/10.1007/s00586-014-3227-9

    Article  PubMed  Google Scholar 

  18. Berjano P, Lamartina C (2014) Classification of degenerative segment disease in adults with deformity of the lumbar or thoracolumbar spine. Eur Spine J 23:1815–1824. https://doi.org/10.1007/s00586-014-3219-9

    Article  PubMed  Google Scholar 

  19. Bridwell KH (2006) Decision making regarding Smith-Petersen vs. pedicle subtraction osteotomy vs. vertebral column resection for spinal deformity. Spine (Phila Pa 1976) 31:S171–S178. https://doi.org/10.1097/01.brs.0000231963.72810.38

    Article  Google Scholar 

  20. Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22:242–253. https://doi.org/10.1007/s00586-012-2426-5

    Article  Google Scholar 

  21. Berjano P, Cecchinato R, Sinigaglia A et al (2015) Anterior column realignment from a lateral approach for the treatment of severe sagittal imbalance: a retrospective radiographic study. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 24(Suppl 3):433–438. https://doi.org/10.1007/s00586-015-3930-1

    Article  Google Scholar 

  22. Aebi M (2005) The adult scoliosis. Eur Spine J 14:925–948. https://doi.org/10.1007/s00586-005-1053-9

    Article  PubMed  Google Scholar 

  23. Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 16:1459–1467. https://doi.org/10.1007/s00586-006-0294-6

    Article  Google Scholar 

  24. Schuller S, Charles YP, Steib J-P (2011) Sagittal spinopelvic alignment and body mass index in patients with degenerative spondylolisthesis. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 20:713–719. https://doi.org/10.1007/s00586-010-1640-2

    Article  Google Scholar 

  25. Liu H, Li S, Zheng Z et al (2015) Pelvic retroversion is the key protective mechanism of L4–5 degenerative spondylolisthesis. Eur Spine J 24:1204–1211. https://doi.org/10.1007/s00586-014-3395-7

    Article  PubMed  Google Scholar 

  26. Försth P, Ólafsson G, Carlsson T et al (2016) A randomized, controlled trial of fusion surgery for lumbar spinal stenosis. N Engl J Med 374:1413–1423. https://doi.org/10.1056/NEJMoa1513721

    Article  PubMed  Google Scholar 

  27. Ahmad S, Hamad A, Bhalla A et al (2017) The outcome of decompression alone for lumbar spinal stenosis with degenerative spondylolisthesis. Eur Spine J 26:414–419. https://doi.org/10.1007/s00586-016-4637-7

    Article  PubMed  Google Scholar 

  28. Kim MK, Lee S-H, Kim E-S et al (2011) The impact of sagittal balance on clinical results after posterior interbody fusion for patients with degenerative spondylolisthesis: a Pilot study. BMC Musculoskelet Disord 12:69. https://doi.org/10.1186/1471-2474-12-69

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jon Lurie CT-L (2015) Management of lumbar spinal stenosis. BMJ Br Med J 78:154–164. https://doi.org/10.1136/bmj.h6234

    Google Scholar 

  30. Abbas J, Hamoud K, May H et al (2010) Degenerative lumbar spinal stenosis and lumbar spine configuration. Eur Spine J 19:1865–1873. https://doi.org/10.1007/s00586-010-1516-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shin EK, Kim CH, Chung CK et al (2017) Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery. Spine J 17:175–182. https://doi.org/10.1016/j.spinee.2016.08.023

    Article  PubMed  Google Scholar 

  32. Fujii K, Kawamura N, Ikegami M et al (2015) Radiological improvements in global sagittal alignment after lumbar decompression without fusion. Spine (Phila Pa 1976) 40:703–709. https://doi.org/10.1097/brs.0000000000000708

    Article  Google Scholar 

  33. Dohzono S, Toyoda H, Matsumoto T et al (2015) The influence of preoperative spinal sagittal balance on clinical outcomes after microendoscopic laminotomy in patients with lumbar spinal canal stenosis. J Neurosurg Spine 23:49–54. https://doi.org/10.3171/2014.11.SPINE14452

    Article  PubMed  Google Scholar 

  34. Hikata T, Watanabe K, Fujita N et al (2014) Impact of sagittal spinopelvic alignment for clinical outcome after decompression surgery for lumbar spinal canal stenosis. Spine J 14:S67. https://doi.org/10.3171/2015.1.SPINE14642.Disclosure

    Article  Google Scholar 

  35. Buckland AJ, Vira S, Oren JH et al (2016) When is compensation for lumbar spinal stenosis a clinical sagittal plane deformity? Spine J 16:971–981. https://doi.org/10.1016/j.spinee.2016.03.047

    Article  PubMed  Google Scholar 

  36. Endo K, Suzuki H, Tanaka H et al (2010) Sagittal spinal alignment in patients with lumbar disc herniation. Eur Spine J 19:435–438. https://doi.org/10.1007/s00586-009-1240-1

    Article  PubMed  Google Scholar 

  37. Liang C, Sun J, Cui X et al (2016) Spinal sagittal imbalance in patients with lumbar disc herniation: its spinopelvic characteristics, strength changes of the spinal musculature and natural history after lumbar discectomy. BMC Musculoskelet Disord 17:305. https://doi.org/10.1186/s12891-016-1164-y

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lamartina C, Berjano P, Petruzzi M et al (2012) Criteria to restore the sagittal balance in deformity and degenerative spondylolisthesis. Eur Spine J 21:27–31. https://doi.org/10.1007/s00586-012-2236-9

    Article  PubMed Central  Google Scholar 

  39. Labelle H, Mac-Thiong JM, Roussouly P (2011) Spino-pelvic sagittal balance of spondylolisthesis: a review and classification. Eur Spine J 20:1–6. https://doi.org/10.1007/s00586-011-1932-1

    Article  Google Scholar 

  40. Labelle H, Roussouly P, Berthonnaud E et al (2005) The importance of spino-pelvic balance in L5-s1 developmental spondylolisthesis: a review of pertinent radiologic measurements. Spine (Phila Pa 1976) 30:S27–S34. https://doi.org/10.1097/01.brs.0000155560.92580.90

    Article  Google Scholar 

  41. Vidal J, Marnay T (1983) Morphology and anteroposterior body equilibrium in spondylolisthesis L5-S1. Rev Chir Orthop Reparatrice Appar Mot 69:17–28

    CAS  PubMed  Google Scholar 

  42. Lamartina C (2001) A square to indicate the unstable zone in severe spondylolisthesis. Eur Spine J 10:444–448. https://doi.org/10.1007/s005860100284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet (London, England) 370:1508–1519. https://doi.org/10.1016/s0140-6736(07)60457-7

    Article  Google Scholar 

  44. Offierski CM, MacNab I (1983) Hip–spine syndrome. Spine (Phila Pa 1976) 8:316–321

    Article  CAS  Google Scholar 

  45. Nashner LM, McCollum G (1985) The organization of human postural movements: a formal basis and experimental synthesis. Behav Brain Sci 8:135. https://doi.org/10.1017/S0140525X00020008

    Article  Google Scholar 

  46. Weng WJ, Wang WJ, Da WuM et al (2015) Characteristics of sagittal spine–pelvis–leg alignment in patients with severe hip osteoarthritis. Eur Spine J 24:1228–1236. https://doi.org/10.1007/s00586-014-3700-5

    Article  PubMed  Google Scholar 

  47. Eyvazov K, Eyvazov B, Basar S et al (2016) Effects of total hip arthroplasty on spinal sagittal alignment and static balance: a prospective study on 28 patients. Eur Spine J 25:3615–3621. https://doi.org/10.1007/s00586-016-4696-9

    Article  PubMed  Google Scholar 

  48. Weng W, Wu H, Wu M et al (2016) The effect of total hip arthroplasty on sagittal spinal–pelvic–leg alignment and low back pain in patients with severe hip osteoarthritis. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 25:3608–3614. https://doi.org/10.1007/s00586-016-4444-1

    Article  Google Scholar 

  49. Raczkowski JW, Daniszewska B, Zolynski K (2010) Functional scoliosis caused by leg length discrepancy. Arch Med Sci 6:393–398. https://doi.org/10.5114/aoms.2010.14262

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ferrero E, Vira S, Ames CP et al (2016) Analysis of an unexplored group of sagittal deformity patients: low pelvic tilt despite positive sagittal malalignment. Eur Spine J 25:3568–3576. https://doi.org/10.1007/s00586-015-4048-1

    Article  PubMed  Google Scholar 

  51. Ekbom K, Lindholm H, Ljungberg L (1972) New dystonic syndrome associated with butyrophenone therapy. Z Neurol 202:94–103

    CAS  PubMed  Google Scholar 

  52. Oh JK, Smith JS, Shaffrey CI et al (2014) Sagittal spinopelvic malalignment in Parkinson disease. Spine (Phila Pa 1976) 39:E833–E841. https://doi.org/10.1097/brs.0000000000000366

    Article  Google Scholar 

  53. Choi HJ, Smith JS, Shaffrey CI et al (2015) Coronal plane spinal malalignment and Parkinson’s disease: prevalence and associations with disease severity. Spine J 15:115–121. https://doi.org/10.1016/j.spinee.2014.07.004

    Article  PubMed  Google Scholar 

  54. Babat LB, McLain RF, Bingaman W et al (2004) Spinal surgery in patients with Parkinson’s disease: construct failure and progressive deformity. Spine (Phila Pa 1976) 29:2006–2012

    Article  Google Scholar 

  55. Schlösser TPC, Janssen MMA, Vrtovec T et al (2014) Evolution of the ischio-iliac lordosis during natural growth and its relation with the pelvic incidence. Eur Spine J. https://doi.org/10.1007/s00586-014-3358-z

    Google Scholar 

  56. Mangione P, Gomez D, Senegas J (1997) Study of the course of the incidence angle during growth. Eur Spine J 6:163–167. https://doi.org/10.1007/BF01301430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. La Maida GA, Zottarelli L, Mineo GV, Misaggi B (2013) Sagittal balance in adolescent idiopathic scoliosis: radiographic study of spino-pelvic compensation after surgery. Eur Spine J. https://doi.org/10.1007/s00586-013-3018-8

    PubMed  PubMed Central  Google Scholar 

  58. Mac-Thiong JM, Labelle H, Berthonnaud E et al (2007) Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J 16:227–234. https://doi.org/10.1007/s00586-005-0013-8

    Article  PubMed  Google Scholar 

  59. Yokoyama K, Kawanishi M, Yamada M et al (2016) Spinopelvic alignment and sagittal balance of asymptomatic adults with 6 lumbar vertebrae. Eur Spine J 25:3583–3588. https://doi.org/10.1007/s00586-015-4284-4

    Article  PubMed  Google Scholar 

  60. Lee S-H, Kim K-T, Seo E-M et al (2012) The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults. J Spinal Disord Tech 25:E41–E47. https://doi.org/10.1097/BSD.0b013e3182396301

    Article  PubMed  Google Scholar 

  61. Janik TJ, Harrison DD, Cailliet R et al (1998) Can the sagittal lumbar curvature be closely approximated by an ellipse? J Orthop Res 16:766–770. https://doi.org/10.1002/jor.1100160620

    Article  CAS  PubMed  Google Scholar 

  62. Hardacker JW, Shuford RF, Capicotto PN, Pryor PW (1997) Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine (Phila Pa 1976) 22:1472–1480

    Article  CAS  Google Scholar 

  63. Scheer JK, Tang JA, Smith JS et al (2013) Cervical spine alignment, sagittal deformity, and clinical implications. J Neurosurg Spine 19:141–159. https://doi.org/10.3171/2013.4.SPINE12838

    Article  PubMed  Google Scholar 

  64. Dubousset J (1990) CD instrumentation in pelvic tilt. Orthopade 19:300–308

    CAS  PubMed  Google Scholar 

  65. Suzuki H, Endo K, Mizuochi J et al (2010) Clasped position for measurement of sagittal spinal alignment. Eur Spine J 19:782–786. https://doi.org/10.1007/s00586-010-1352-7

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vedantam R, Lenke LG, Bridwell KH et al (2000) The effect of variation in arm position on sagittal spinal alignment. Spine (Phila Pa 1976) 25:2204–2209

    Article  CAS  Google Scholar 

  67. Horton WC, Brown CW, Bridwell KH et al (2005) Is there an optimal patient stance for obtaining a lateral 36” radiograph? A critical comparison of three techniques. Spine (Phila Pa 1976) 30:427–433

    Article  Google Scholar 

  68. Dubousset J, Challier V, Farcy JP, Schwab FJ, Lafage V (2015) Spinal alignment versus spinal balance. In: Haid RW, Schwab FJ, Shaffrey CI, Youssef J (eds) Global spinal alignment: principles, pathologies, and procedures. Quality Medical Publishing, St. Louis, pp 3–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Redaelli.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redaelli, A., Berjano, P. & Aebi, M. Focal disorders of the spine with compensatory deformities: how to define them. Eur Spine J 27 (Suppl 1), 59–69 (2018). https://doi.org/10.1007/s00586-018-5501-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5501-8

Keywords

Navigation