Skip to main content
Log in

The effect on transcription efficiency of the apolipoprotein AI gene of DNA variants at the 5′ untranslated region

  • Original
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Elevated circulating levels of high-density lipoprotein and apolipoprotein AI are associated with reduced coronary artery disease risk. We have shown that a C to T substitution at +83 bp and a G to A substitution at −75 bp of the apolipoprotein AI gene are both related to increased high-density lipoprotein levels in a healthy population but not in a coronary population, among whom the same mutations are associated with increased disease severity. In the present study, we explored the effects of these base changes on transcriptional efficiency in vitro. We directionally cloned (using polymerase chain reaction) the 5′ region of the apolipoprotein AI gene (−281 to +330 bp) with GC, GT, and AC haplotypes into a pGL3-luciferase reporter gene basic vector, and transfected the constructed vectors into HepG2 cells. The cells carrying the T allele at the +83 bp site (GT 112.3 ±12.4) had the same transcriptional efficiency as those bearing the C allele (GC 126.3 ± 9.6). However, for cells with the A allele at −75 bp there was a twofold decrease in transcription (AC 63.1 ± 9.3) accompanied by similar changes in Luc+ mRNA levels; this reduced transcription was only present if the apolipoprotein AI leader sequence was included in the insert. While the findings are inconsistent with the T or A allele being associated with higher high-density lipoprotein levels, they are consistent with the finding that the alleles are associated with an increased coronary artery disease risk, and demonstrate that the 5′ leader region of the apolipoprotein AI gene participates in regulating apolipoprotein AI transcription. They also suggest that other regions of the apolipoprotein AI gene may have an active role in such regulation, and that environmental effects may influence allele-specific expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tribble DL, Krauss RM. HDL and coronary artery disease (review). Adv Intern Med 1993; 38: 1.

    PubMed  CAS  Google Scholar 

  2. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 1991; 325: 373.

    PubMed  CAS  Google Scholar 

  3. Badimon JJ, Fuster V, Badimon L. Role of high density lipoproteins in the regression of atherosclerosis. Circulation 1992; 86 [Suppl III]: III86.

  4. Barter PJ. The role of HDL in reverse cholesterol transport and atherosclerosis. Lipid Rev 1990; 4: 89.

    Google Scholar 

  5. Forte TM, McCall MR. The role of apolipoprotein A-I-containing lipoproteins in atherosclerosis. Curr Opin Lipiodol 1994; 5: 354.

    Article  CAS  Google Scholar 

  6. Wang XL, Tam C, McCredie RM, Wilcken DEL. Determinants of severity of coronary artery disease in Australian men and women. Circulation 1994; 89: 1974.

    PubMed  CAS  Google Scholar 

  7. Steinmetz J, Boerwinkle E, Gueguen R, Visvikis S, Henny J, Siest G. Multivariate genetic analysis of high density lipoprotein. Atherosclerosis 1992; 92: 219.

    Article  PubMed  CAS  Google Scholar 

  8. Assmann G, Eckardstein A von, Funke H. High density lipoproteins, reverse transport of cholesterol, and coronary artery disease. Insights from mutation [review]. Circulation 1993; 87 [Suppl III]: III28.

  9. Blangero J, Williams-Blangero S, Mahaney M;. Multivariate genetic analysis of apo AI concentration and HDL subfractions: evidence for major locus pleiotropy. Genet Epidemiol 1993; 10: 617.

    Article  PubMed  CAS  Google Scholar 

  10. Paul-Hayase H, Rosseneu M, Robinson D, Van Biervliet JP, Deslypere JP, Humphries SE. Polymorphisms in the apolipoprotein (apo) AI-CIII-AIV gene cluster: detection of genetic variation determining plasma apo AI, apo CIII and apo AIV concentrations. Hum Genet 1992; 88: 439.

    Article  PubMed  CAS  Google Scholar 

  11. Humphries S, Gudnason V, Paul-Hayase H, Saha N, Rosseneu M. Identification of common genetic polymorphisms that determine plasma levels of ap AI and HDL-C. In: Sirtori CR, Franceschini G, Brewer BH Jr, eds. Human apolipoprotein mutants III: diagnosis and treatment. Berlin Heidelberg New York: Springer 1993: 247–256.

    Google Scholar 

  12. Pagani F, Giudic GA, Baralle FE, Vergani C. Association of a polymorphism in the apo AI gene promoter with hyperalphalipoproteinemia. Eur J Epidemiol 1992; 8 [Suppl 1]: 54.

    Article  PubMed  CAS  Google Scholar 

  13. Talmud PJ, Ye S, Humphries SE, EARS Group. Polymorphism in the promoter region of the apolipoprotein AI gene associated with differences in apolipoprotein AI levels: The European Atherosclerosis Research Study. Genet Epidemiol 1994; 11: 265.

    Article  PubMed  CAS  Google Scholar 

  14. Lopez-Miranda J, Ordovas JM, Espino A, et al. Influence of mutation in human apolipoprotein AI gene promoter on plasma LDL cholesterol response to dietary fat. Lancet 1994; 343: 12467.

    Google Scholar 

  15. Angotti E, Mele E, Costanzo F, Avvedimento EV. A polymorphism (G-A transition) in the −78 position of the apolipoprotein AI promoter increases transcription efficiency. J Biol Chem 1994; 269: 17371.

    PubMed  CAS  Google Scholar 

  16. Papazafiri P, Ogami K, Ramji DP, et al. Promoter elements and factors involved in hepatic transcription of the human apo AI gene positive and negative regulators bind to overlapping sites. J Biol Chem 1991; 266: 5790.

    PubMed  CAS  Google Scholar 

  17. Tuteja R, Tuteja N, Melo C, Casari G, Baralle FE. Transcription efficiency of human apolipoprotein A-I promoter varies with naturally occurring A to G transition. FEBS Lett 1992; 304: 98.

    Article  PubMed  CAS  Google Scholar 

  18. Barre DE, Guerra R, Verstraete R, Wang Z, Grundy SM, Cohen JC. Genetic analysis of a polymorphism in the human apolipoprotein AI gene promoter: effect on plasma HDL-cholesterol levels. J Lipid Res 1994; 35: 1292.

    PubMed  CAS  Google Scholar 

  19. Minnich A, DeLangavant G, Lavigne J, Roederer G, Lussier-Cacan S, Davignon J. G-A substitution at position −75 of the apolipoprotein AI gene promoter. Evidence against a direct effect on HDL cholesterol levels. Arterioscler Thromb Vasc Biol 1995; 15: 1740.

    PubMed  CAS  Google Scholar 

  20. Sigurdsson G Jr, Gudnason V, Sigurdsson G Humphries SE. Interaction between a polymorphism of the apo AI promoter region and smoking determines plasma levels of HDL and apo AI. Arterioscler Thromb 1992; 1017.

  21. Wang XL, Badenhop R, Humphrey K, Wilcken DEL. C to T and G to A transitions are responsible for loss of aMspI restriction site in the 5′-region of the human apolipoprotein AI gene. Hum Genet 1995; 95: 473.

    Article  PubMed  CAS  Google Scholar 

  22. Wang XL, Badenhop RB, Humphrey KE, Wilcken DEL. NewMspI polymorphism at +83 bp of the human apolipoprotein AI gene: association with inreased circulating high density lipoprotein cholesterol levels. Genet Epidemiol 1996; 13: 1.

    Article  PubMed  Google Scholar 

  23. Shemer R, Walsh A, Eisenberg S, Breslow JL, Razin A. Tissuespecific methylation patterns and expression of the human apolipoprotein AI gene. J Biol Chem 1990; 265: 1010.

    PubMed  CAS  Google Scholar 

  24. Shemer R, Eisenberg S, Breslow JL, Razin A. Methylation patterns of the human apo A-I/C-III/A-IV gene cluster in adult and embryonic tissues suggest dynamic changes in methylation during development. J Biol Chem 1991; 266: 23676.

    PubMed  CAS  Google Scholar 

  25. Ginsburg GS, Ozer J, Karathanasis SK. Intestinal apolipoprotein AI gene transcription is regulated by multiple distinct DNA elements and is synergistically activated by the orphan nuclear receptor, hepatocyte nuclear factor 4. J Clin Invest 1995; 96: 528.

    Article  PubMed  CAS  Google Scholar 

  26. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation (minireview). J Biol Chem 1991; 266: 19867.

    PubMed  CAS  Google Scholar 

  27. Sonenberg N. mRNA translation: influence of the 5′ and 3′ untranslated regions. Curr Opin Genet Dev 1994; 4: 310.

    Article  PubMed  CAS  Google Scholar 

  28. Falcone D, Andrews DW. Both the 5′ untranslated region and the sequences surrounding the start site contribute to efficient initiation of translation in vitro. Mol Cell Biol 1991; 11: 2656.

    PubMed  CAS  Google Scholar 

  29. Kaufman RJ. Control of gene expression at the level of translation initiation Curr Opin Biotechnol 1994; 5: 550.

    CAS  Google Scholar 

  30. Widom RL, Ladias JAA, Kouidou S, Karathanasis SK. Synergistic interactions between transcription factors control expression of the apolipoprotein AI gene in liver cells. Mol Cell Biol 1991; 11: 677.

    PubMed  CAS  Google Scholar 

  31. Shoulders CC, Kornblihtt AR, Munro BS, Baralle FE. Gene structure of human apolipoprotein AI. Nucleic Acids Res 1983; 11: 2827.

    Article  PubMed  CAS  Google Scholar 

  32. Dietmaier W, Fabry S. Protocol: di-/trinucleotide sticky end cloning (DI/TRISEC). Boehringer Mannheim PCR application manual. Mannheim: Boehringer Mannheim; 1995; 136–140.

    Google Scholar 

  33. Wang XL, Liu S-X, McCredie RM, Wilcken DEL. Polymorphisms at the 5′-end of the apolipoprotein AI gene and the severity of coronary artery disease. J Clin Invest 1996; 98: 372.

    Article  PubMed  CAS  Google Scholar 

  34. Sorci-Thomas M, Kearns MW. Transcriptional regulation of the apolipoprotein A-I gene. Species-specific expression correlations with rates of gene transcription. J Biol Chem 1991; 26: 18045.

    Google Scholar 

  35. Sastry KN, Seedorf U, Karathanasis SK. Different cis-acting DNA elements control expression of the human apolipoprotein AI gene in different cell types. Mol Cell Biol 1998; 8: 605.

    Google Scholar 

  36. Bisaha JG, Simon TC, Gordon JI, Breslow JL. Characterization of an enhancer element in the human apolipoprotein C-III gene that regulates human apolipoprotein A-I gene expression in the intestinal epithelium. J Biol Chem 1995; 270: 19979.

    Article  PubMed  CAS  Google Scholar 

  37. Naganawa S, Ginsberg HN, Glickman RM, Ginsburg GS. Intestinal transcription and synthesis of apolipoprotein AI is regulated by five natural polymorphisms upstream of the apolipoprotein CIII gene. J Clin Invest 1997; 99: 1958.

    Article  PubMed  CAS  Google Scholar 

  38. Smith JD, Brinton EA, Breslow JL. Polymorphism in the human apolipoprotein A-I gene promoter region. Association of the minor allele with decreased production rate in vivo and promoter activity in vitro. J Clin Invest 1992; 89: 1796.

    Article  PubMed  CAS  Google Scholar 

  39. Danek GM, Valenti M, Baralle FE, Romano M. The A/G polymorphism in the −78 position of the apolipoprotein A-I promoter does not have a direct effect on transcriptional efficiency. Biochim Biophys Acta 1998; 1398: 67.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.L., Badenhop, R.B., Sim, A.S. et al. The effect on transcription efficiency of the apolipoprotein AI gene of DNA variants at the 5′ untranslated region. Int J Clin Lab Res 28, 235–241 (1998). https://doi.org/10.1007/s005990050051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005990050051

Key words

Navigation