Skip to main content
Log in

Ketogene Ernährungstherapie – Formen und Anwendungsgebiete

Ketogenic Nutrition Therapy: Forms and Applications

  • Originalien
  • Published:
Pädiatrie & Pädologie Aims and scope

Zusammenfassung

Unter dem Begriff der ketogenen Ernährungstherapie (kETH) können alle bekannten Varianten ketogener Diäten (KD) zusammengefasst werden. Ketogene Diäten imitieren den metabolischen Zustand des Fastens bei gleichzeitigem Vermeiden einer Katabolie. Allen Formen der KD ist sowohl ein hoher Fettgehalt als auch ein niedriger Kohlenhydratgehalt gemein. Der Proteinanteil kann je nach Form der gewählten Ernährungstherapie variieren. Aus dem Nahrungsfett werden in der Leber Ketonkörper synthetisiert. Diese stellen Energie bereit und können bei Hypoglykämien als Energiesubstrat für das zentrale Nervensystem dienen. Etablierte Anwendungsgebiete der KD sind die Behandlung pharmakoresistenter Epilepsien im Kindes- und Jugendalter sowie die Therapie angeborener Stoffwechselstörungen. Dabei ist zu unterscheiden, ob mit der KD direkt der Mechanismus der zugrunde liegenden Stoffwechselstörung beeinflusst wird oder Symptome wie Epilepsie bzw. Anfälle behandelt werden. Während die klassische KD bereits gut untersucht und weit verbreitet ist, gewinnen andere Formen ketogener Diäten (MCT angereicherte KD, modifizierte Atkins-Diät, Low Glycemic Index Treatment) zunehmend an Bedeutung. Ursächlich dafür sind die leichtere Umsetzbarkeit und damit einhergehend eine höhere Compliance vonseiten der Patienten.

Abstract

The term ketogenic nutrition therapy summarizes various types of ketogenic diets (KDs). KDs imitate the metabolic state of fasting, but catabolism is avoided. All types are high-fat, low-carbohydrate diets. The amount of protein changes according to the type of KD chosen. Ketone bodies are synthesized in the liver from dietary fat and used as an energy source for the central nervous system during hypoglycaemia. Established applications for KD are pharmacoresistant epilepsy and inborn disorders of metabolism. However, it remains to be decided whether KDs can directly target the mechanism of the underlying metabolic disorder or treat the clinical symptoms such as epileptic seizures. Although classical KDs are widespread and well-studied, novel forms, e. g. medium-chain triacylglycerol-enriched KD, the modified Atkins diet, and low glycaemic index treatment, are gaining in importance. The reason is that they are easier to implement, and thus induce greater compliance of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baumeister FAM (2012) Ketogene Diät: Ernährung als Therapiestrategie bei Epilepsien und anderen Erkrankungen. Schattauer, Stuttgart

    Google Scholar 

  2. Scholl-Bürgi S, Höller A, Pichler K, Michel M, Haberlandt E, Karall D (2015) Ketogenic diets in patients with inherited metabolic disorders. J Inherit Metab Dis 38(4):765

    Article  PubMed  Google Scholar 

  3. Levy RG, Cooper PN, Giri P (2012) Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev 3:CD001903

    PubMed  Google Scholar 

  4. Danial NN, Hartmann AL, Stafstrom CE, Thio LL (2013) How does the ketogenic diet work? Four potential mechanisms. J Child Neurol 28:1027–1033

    Article  PubMed  PubMed Central  Google Scholar 

  5. McDaniel SS, Resing NR, Thio LL, Yamanda KA, Wong M (2011) The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 52:7–11

    Article  Google Scholar 

  6. Bough KJ, Rho JM (2007) Antikonvulsant mechanism of the ketogenic diet. Epilepsia 48:43–58

    Article  CAS  PubMed  Google Scholar 

  7. Dagli A, Sentner CP, Weinstein DA (2010) Glycogen Storage Disease Type III. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (Hrsg) GeneReviews. University of Washington, Seattle, S 1993–2014

    Google Scholar 

  8. Valayannopoulos V, Bajolle F, Arnoux JB et al (2011) Successful treatment of severe cardiomyopathy in glycogen storage disease type III With D, L‑3-hydroxybutyrate, ketogenic and high-protein diet. Pediatr Res 70:638–641

    Article  CAS  PubMed  Google Scholar 

  9. Kossoff EH, Zupec-Kania BA, Amark PE, Ballaban-Gil KR et al (2009) Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia 50(2):304–317

    Article  PubMed  Google Scholar 

  10. Haberlandt E, Scholl-Bürgi S, Karall D, Höller A et al (2014) Grundlagen der ketogenen Diäten. Mitteilungen der Österreichischen Ges. für Epileptologie. 12(2):2–7

    Google Scholar 

  11. Rieger J, Bähr O, Maurer GD, Hattingen E, Franz K, Brucker D, Walenta S, Kämmerer U, Coy JF, Weller M, Steinbach JP (2014) ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol 44(6):1843–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass J, Kim L, Shi W (2014) Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neurooncol 117(1):125–131

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz K, Chang HT, Nikolai M, Pernicone J, Rhee S, Olson K, Kurniali PC, Hord NG, Noel M (2015) Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer Metab. doi:10.1186/s40170-015-0129-1

    PubMed  PubMed Central  Google Scholar 

  14. Kossoff EH, Zupec-Kania BA, Rho JM (2009) Ketogenic diets: an update for child neurologists. J Child Neurol 24(8):979–988

    Article  PubMed  Google Scholar 

  15. Bach A, Babayan VK (1982) Medium-chain triglycerides: an update. Am J Clin Nutr 36:950–962

    CAS  PubMed  Google Scholar 

  16. Kossoff EH, Wang H‑S (2013) Dietary therapies für epilepsy. Biomed J 36:2–8

    Article  PubMed  Google Scholar 

  17. Kossoff EH, Turner Z, Bluml RM, Pyzik PL, Vining EPG (2007) A randomized, crossover comparison of daily carbohydrate limits using the modified Atkins diet. Epilepsy Behav 10:432–436

    Article  PubMed  Google Scholar 

  18. Klepper J, Leiendecker B (2013) Glut I deficiency syndrome and novel ketogenic diets. J Child Neurol 28(8):1045–1048

    Article  PubMed  Google Scholar 

  19. Zupec-Kania BA, Aldaz V, Montgomery ME, Kostas KC (2011) Enteral and parenteral applications of ketogenic diet therapy: experience from four centers. Infant Child Adolesc Nutr 3:274

    Article  Google Scholar 

  20. Roan M (2011) Management of long-term Ketogenic Parenteral nutrition. Infant Child Adolesc Nutr 3(5):282–287

    Article  Google Scholar 

  21. Rosenthal E, Weissman B, Kyllonen K (1990) Use of parenteral medium-chain triglyceride emulsion for maintaining seizure control in a 5‑year-old girl with intractable diarrhea. JPEN J Parenter Enteral Nutr 14(5):543–545

    Article  CAS  PubMed  Google Scholar 

  22. Jung DE, Kang HC, Lee JS, Lee EJ, Kim HD (2012) Safety and role of ketogenic parenteral nutrition for intractable childhood epilepsy. Brain Dev 34(8):620–624

    Article  PubMed  Google Scholar 

  23. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R et al (2005) 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 41(2):1–87

    Article  Google Scholar 

  24. Karall D, Brunner-Krainz M, Kogelnig K, Konstantopoulou V, Maier EM, Möslinger D, Plecko B, Sperl W, Volkmar B, Scholl-Bürgi S (2015) Clinical outcome, biochemical and therapeutic follow-up in 14 Austrian patients with Long-Chain 3‑Hydroxy Acyl CoA Dehydrogenase Deficiency (LCHADD). Orphanet J Rare Dis 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pascual JM, Liu P, Mao D, Kelly DI (2014) Hernandez A et al.. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol 71(10):1255–1265

    Article  PubMed  PubMed Central  Google Scholar 

  26. Viggiano A, Pilla R, Arnold P, Monda M, D’Agostino D, Coppola G (2015) Anticonvulsant properties of an oral ketone ester in a pentylenetetrazole-model of seizure. Brain Res 1618:50–54

    Article  CAS  PubMed  Google Scholar 

  27. D’Agostino DP, Pilla R, Held HE, Landon CS, Puchowicz M, Brunengraber H, Ari C, Arnold P, Dean JB (2013) Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. Am J Physiol Regul Integr Comp Physiol 304(10):829–836

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Höller.

Ethics declarations

Interessenkonflikt

A. Höller, E. Haberlandt, D. Karall und S. Scholl-Bürgi geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höller, A., Haberlandt, E., Karall, D. et al. Ketogene Ernährungstherapie – Formen und Anwendungsgebiete. Paediatr. Paedolog. Austria 51, 152–155 (2016). https://doi.org/10.1007/s00608-016-0395-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00608-016-0395-3

Schlüsselwörter

Keywords

Navigation