Skip to main content

Advertisement

Log in

The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Glutamate is the most important excitatory neurotransmitter of the nervous system, critically needed for the brain’s development and function. Glutamate has also a signaling role in peripheral organs. Herein, we discuss glutamate receptors (GluRs) and glutamate-induced direct effects on human T cells. T cells are the most important cells of the adaptive immune system, crucially needed for eradication of all infectious organisms and cancer. Normal, cancer and autoimmune human T cells express functional ionotropic and metabotropic GluRs. Different GluR subtypes are expressed in different T cell subtypes, and in resting vs. activated T cells. Glutamate by itself, at low physiological 10−8M to 10−5M concentrations and via its several types of GluRs, activates many key T cell functions in normal human T cells, among them adhesion, migration, proliferation, intracellular Ca2+ fluxes, outward K+ currents and more. Glutamate also protects activated T cells from antigen-induced apoptotic cell death. By doing all that, glutamate can improve substantially the function and survival of resting and activated human T cells. Yet, glutamate’s direct effects on T cells depend dramatically on its concentration and might be inhibitory at excess pathological 10−3M glutamate concentrations. The effects of glutamate on T cells also depend on the specific GluRs types expressed on the target T cells, the T cell’s type and subtype, the T cell’s resting or activated state, and the presence or absence of other simultaneous stimuli besides glutamate. Glutamate also seems to play an active role in T cell diseases. For example, glutamate at several concentrations induces or enhances significantly very important functions of human T-leukemia and T-lymphoma cells, among them adhesion to the extracellular matrix, migration, in vivo engraftment into solid organs, and the production and secretion of the cancer-associated matrix metalloproteinase MMP-9 and its inducer CD147. Glutamate induces all these effects via activation of GluRs highly expressed in human T-leukemia and T-lymphoma cells. Glutamate also affects T cell-mediated autoimmune diseases. With regards to multiple sclerosis (MS), GluR3 is highly expressed in T cells of MS patients, and upregulated significantly during relapse and when there is neurological evidence of disease activity. Moreover, glutamate or AMPA (10−8M to 10−5M) enhances the proliferation of autoreactive T cells of MS patients in response to myelin proteins. Thus, glutamate may play an active role in MS. Glutamate and its receptors also seem to be involved in autoimmune rheumatoid arthritis and systemic lupus erythematosus. Finally, T cells can produce and release glutamate that in turn affects other cells, and during the contact between T cells and dendritic cells, the latter cells release glutamate that has potent effects on the T cells. Together, these evidences show that glutamate has very potent effects on normal, and also on cancer and autoimmune pathological T cells. Moreover, these evidences suggest that glutamate and glutamate-receptor agonists might be used for inducing and boosting beneficial T cell functions, for example, T cell activity against cancer and infectious organisms, and that glutamate-receptor antagonists might be used for preventing glutamate-induced activating effects on detrimental autoimmune and cancerous T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Affaticati P, Mignen O, Jambou F, Potier MC, Klingel-Schmitt I, Degrouard J, Peineau S, Gouadon E, Collingridge GL, Liblau R, Capiod T, Cohen-Kaminsky S (2011) Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. Cell Death Differ 18(1):99–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arcella A, Carpinelli G, Battaglia G, D’Onofrio M, Santoro F, Ngomba RT, Bruno V, Casolini P, Giangaspero F, Nicoletti F (2005) Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro Oncol 7(3):236–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395(6705):913–917

    CAS  PubMed  Google Scholar 

  • Boettger MK, Weber K, Gajda M, Brauer R, Schaible HG (2010) Spinally applied ketamine or morphine attenuate peripheral inflammation and hyperalgesia in acute and chronic phases of experimental arthritis. Brain Behav Immun 24(3):474–485

    CAS  PubMed  Google Scholar 

  • Bonsi P, Cuomo D, De Persis C, Centonze D, Bernardi G, Calabresi P, Pisani A (2005) Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons. Neuropharmacology 49(Suppl 1):104–113

    CAS  PubMed  Google Scholar 

  • Braun S, Gaza N, Werdehausen R, Hermanns H, Bauer I, Durieux ME, Hollmann MW, Stevens MF (2010) Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells. Br J Anaesth 105(3):347–354

    CAS  PubMed  Google Scholar 

  • Cahalan MD, Wulff H, Chandy KG (2001) Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol 21(4):235–252

    CAS  PubMed  Google Scholar 

  • Carvalheiro H, da Silva JA, Souto-Carneiro MM (2013) Potential roles for CD8(+) T cells in rheumatoid arthritis. Autoimmun Rev 12(3):401–409

    CAS  PubMed  Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415(6873):793–798

    CAS  PubMed  Google Scholar 

  • Chiocchetti A, Miglio G, Mesturini R, Varsaldi F, Mocellin M, Orilieri E, Dianzani C, Fantozzi R, Dianzani U, Lombardi G (2006) Group I mGlu receptor stimulation inhibits activation-induced cell death of human T lymphocytes. Br J Pharmacol 148(6):760–768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu Z, Hablitz JJ (2000) Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain Res 879(1–2):88–92

    CAS  PubMed  Google Scholar 

  • Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, Colgan SP (2002) Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 277(17):14801–14811

    CAS  PubMed  Google Scholar 

  • Collingridge GL, Singer W (1990) Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 11(7):290–296

    CAS  PubMed  Google Scholar 

  • Collingridge GL, Olsen RW, Peters J, Spedding M (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology 56(1):2–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    CAS  PubMed  Google Scholar 

  • Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393(6683):377–381

    CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  • Divino Filho JC, Hazel SJ, Furst P, Bergstrom J, Hall K (1998) Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (IGF)-I, IGF binding protein-1 and insulin in patients on haemodialysis. J Endocrinol 156(3):519–527

    CAS  PubMed  Google Scholar 

  • Droge W, Eck HP, Betzler M, Schlag P, Drings P, Ebert W (1988) Plasma glutamate concentration and lymphocyte activity. J Cancer Res Clin Oncol 114(2):124–128

    CAS  PubMed  Google Scholar 

  • Droge W, Murthy KK, Stahl-Hennig C, Hartung S, Plesker R, Rouse S, Peterhans E, Kinscherf R, Fischbach T, Eck HP (1993) Plasma amino acid dysregulation after lentiviral infection. AIDS Res Hum Retroviruses 9(9):807–809

    CAS  PubMed  Google Scholar 

  • Eck HP, Drings P, Droge W (1989a) Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J Cancer Res Clin Oncol 115(6):571–574

    CAS  PubMed  Google Scholar 

  • Eck HP, Frey H, Droge W (1989b) Elevated plasma glutamate concentrations in HIV-1-infected patients may contribute to loss of macrophage and lymphocyte functions. Int Immunol 1(4):367–372

    CAS  PubMed  Google Scholar 

  • Endoh T (2004) Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res 1024(1–2):212–224

    CAS  PubMed  Google Scholar 

  • Ferrarese C, Aliprandi A, Tremolizzo L, Stanzani L, De Micheli A, Dolara A, Frattola L (2001) Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 57(4):671–675

    CAS  PubMed  Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res 319(2):103–164

    CAS  PubMed  Google Scholar 

  • Gahring L, Carlson NG, Meyer EL, Rogers SW (2001) Granzyme B proteolysis of a neuronal glutamate receptor generates an autoantigen and is modulated by glycosylation. J Immunol 166(3):1433–1438

    CAS  PubMed  Google Scholar 

  • Ganor Y, Levite M (2012) Glutamate in the immune system: glutamate receptors in immune cells, potent effects, endogenous production and involvement in disease. In: Levite M (ed) Nerve-driven immunity: neurotransmitters and neuropeptides in the immune system. Springer, Vienna, pp 121–161

    Google Scholar 

  • Ganor Y, Besser M, Ben-Zakay N, Unger T, Levite M (2003) Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J Immunol 170(8):4362–4372

    CAS  PubMed  Google Scholar 

  • Ganor Y, Teichberg VI, Levite M (2007) TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage. J Immunol 178(2):683–692

    CAS  PubMed  Google Scholar 

  • Ganor Y, Grinberg I, Reis A, Cooper I, Goldstein RS, Levite M (2009) Human T-leukemia and T-lymphoma express glutamate receptor AMPA GluR3, and the neurotransmitter glutamate elevates the cancer-related matrix-metalloproteinases inducer CD147/EMMPRIN, MMP-9 secretion and engraftment of T-leukemia in vivo. Leuk Lymphoma 50(6):985–997

    CAS  PubMed  Google Scholar 

  • Garg SK, Banerjee R, Kipnis J (2008) Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol 180(6):3866–3873

    CAS  PubMed  Google Scholar 

  • Gill SS, Pulido OM (2001) Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol 29(2):208–223

    CAS  PubMed  Google Scholar 

  • Graham TE, Sgro V, Friars D, Gibala MJ (2000) Glutamate ingestion: the plasma and muscle free amino acid pools of resting humans. Am J Physiol Endocrinol Metab 278(1):E83–E89

    CAS  PubMed  Google Scholar 

  • Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81

    CAS  PubMed  Google Scholar 

  • Guse AH (1998) Ca2+ signaling in T-lymphocytes. Crit Rev Immunol 18(5):419–448

    CAS  PubMed  Google Scholar 

  • Hinoi E, Yoneda Y (2011) Possible involvement of glutamatergic signaling machineries in pathophysiology of rheumatoid arthritis. J Pharmacol Sci 116(3):248–256

    CAS  PubMed  Google Scholar 

  • Hinoi E, Ogita K, Takeuchi Y, Ohashi H, Maruyama T, Yoneda Y (2001) Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochem Int 38(3):277–285

    CAS  PubMed  Google Scholar 

  • Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y (2004) Glutamate signaling in peripheral tissues. Eur J Biochem 271(1):1–13

    CAS  PubMed  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    CAS  PubMed  Google Scholar 

  • Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342(6250):643–648

    CAS  PubMed  Google Scholar 

  • Huettner JE (2003) Kainate receptors and synaptic transmission. Prog Neurobiol 70(5):387–407

    CAS  PubMed  Google Scholar 

  • Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8(9):971–978

    CAS  PubMed  Google Scholar 

  • Kalariti N, Pissimissis N, Koutsilieris M (2005) The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig Drugs 14(12):1487–1496

    CAS  PubMed  Google Scholar 

  • Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    CAS  PubMed  Google Scholar 

  • Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249(4968):556–560

    CAS  PubMed  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179(1):4–29

    CAS  PubMed  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260(5104):95–97

    CAS  PubMed  Google Scholar 

  • Kostanyan IA, Merkulova MI, Navolotskaya EV, Nurieva RI (1997) Study of interaction between L-glutamate and human blood lymphocytes. Immunol Lett 58(3):177–180

    CAS  PubMed  Google Scholar 

  • La Cava A (2009) Lupus and T cells. Lupus 18(3):196–201

    PubMed  Google Scholar 

  • Lerma J (2006) Kainate receptor physiology. Curr Opin Pharmacol 6(1):89–97

    CAS  PubMed  Google Scholar 

  • Levite M (2008) Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol 8(4):460–471

    CAS  PubMed  Google Scholar 

  • Levite M (2012) Nerve-driven immunity: neurotransmitters and neuropeptides in the immune system, First edition edn edn. Springer, Berlin

    Google Scholar 

  • Levite M, Ganor Y (2008) Autoantibodies to glutamate receptors can damage the brain in epilepsy, systemic lupus erythematosus and encephalitis. Expert Rev Neurother 8(7):1141–1160

    CAS  PubMed  Google Scholar 

  • Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O (2000) Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins. J Exp Med 191(7):1167–1176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Tsien JZ (2009) Memory and the NMDA receptors. N Engl J Med 361(3):302–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML et al (1993) Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med 177(3):637–645

    CAS  PubMed  Google Scholar 

  • Lindblad SS, Mydel P, Hellvard A, Jonsson IM, Bokarewa MI (2011) The N-methyl-d-aspartic acid receptor antagonist memantine ameliorates and delays the development of arthritis by enhancing regulatory T cells. Neurosignals 20(2):61–71

    PubMed  Google Scholar 

  • Lombardi G, Dianzani C, Miglio G, Canonico PL, Fantozzi R (2001) Characterization of ionotropic glutamate receptors in human lymphocytes. Br J Pharmacol 133(6):936–944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lombardi G, Miglio G, Canonico PL, Naldi P, Comi C, Monaco F (2003) Abnormal response to glutamate of T lymphocytes from multiple sclerosis patients. Neurosci Lett 340(1):5–8

    CAS  PubMed  Google Scholar 

  • Lombardi G, Miglio G, Dianzani C, Mesturini R, Varsaldi F, Chiocchetti A, Dianzani U, Fantozzi R (2004) Glutamate modulation of human lymphocyte growth: in vitro studies. Biochem Biophys Res Commun 318(2):496–502

    CAS  PubMed  Google Scholar 

  • Maddur MS, Miossec P, Kaveri SV, Bayry J (2012) Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 181(1):8–18

    CAS  PubMed  Google Scholar 

  • Mashkina AP, Tyulina OV, Solovyova TI, Kovalenko EI, Kanevski LM, Johnson P, Boldyrev AA (2007) The excitotoxic effect of NMDA on human lymphocyte immune function. Neurochem Int 51(6–7):356–360

    CAS  PubMed  Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349(6312):760–765

    CAS  PubMed  Google Scholar 

  • Mayer ML (2005) Glutamate receptor ion channels. Curr Opin Neurobiol 15(3):282–288

    CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28(3):197–276

    CAS  PubMed  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015S

    CAS  PubMed  Google Scholar 

  • Melzer N, Hicking G, Bittner S, Bobak N, Gobel K, Herrmann AM, Wiendl H, Meuth SG (2013) Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter. J Neuroinflammation 10:121

    PubMed Central  PubMed  Google Scholar 

  • Midgett CR, Gill A, Madden DR (2012) Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation. Front Mol Neurosci 4:56

    PubMed Central  PubMed  Google Scholar 

  • Miglio G, Varsaldi F, Dianzani C, Fantozzi R, Lombardi G (2005a) Stimulation of group I metabotropic glutamate receptors evokes calcium signals and c-jun and c-fos gene expression in human T cells. Biochem Pharmacol 70(2):189–199

    CAS  PubMed  Google Scholar 

  • Miglio G, Varsaldi F, Lombardi G (2005b) Human T lymphocytes express N-methyl-d-aspartate receptors functionally active in controlling T cell activation. Biochem Biophys Res Commun 338(4):1875–1883

    CAS  PubMed  Google Scholar 

  • Miglio G, Dianzani C, Fallarini S, Fantozzi R, Lombardi G (2007) Stimulation of N-methyl-d-aspartate receptors modulates Jurkat T cell growth and adhesion to fibronectin. Biochem Biophys Res Commun 361(2):404–409

    CAS  PubMed  Google Scholar 

  • Miossec P, Kolls JK (2012) Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov 11(10):763–776

    CAS  PubMed  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    CAS  PubMed  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354(6348):31–37

    CAS  PubMed  Google Scholar 

  • Nakayama T, Yamashita M (2010) The TCR-mediated signaling pathways that control the direction of helper T cell differentiation. Semin Immunol 22(5):303–309

    CAS  PubMed  Google Scholar 

  • Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3(9):748–755

    CAS  PubMed  Google Scholar 

  • Nicoletti F, Arcella A, Iacovelli L, Battaglia G, Giangaspero F, Melchiorri D (2007) Metabotropic glutamate receptors: new targets for the control of tumor growth? Trends Pharmacol Sci 28(5):206–213

    CAS  PubMed  Google Scholar 

  • Ohashi H, Maruyama T, Higashi-Matsumoto H, Nomoto T, Nishimura S, Takeuchi Y (2002) A novel binding assay for metabotropic glutamate receptors using [3H] L-quisqualic acid and recombinant receptors. Z Naturforsch C 57(3–4):348–355

    CAS  PubMed  Google Scholar 

  • Ollenschlager G, Karner J, Karner-Hanusch J, Jansen S, Schindler J, Roth E (1989) Plasma glutamate—a prognostic marker of cancer and of other immunodeficiency syndromes? Scand J Clin Lab Invest 49(8):773–777

    CAS  PubMed  Google Scholar 

  • Pacheco R, Ciruela F, Casado V, Mallol J, Gallart T, Lluis C, Franco R (2004) Group I metabotropic glutamate receptors mediate a dual role of glutamate in T cell activation. J Biol Chem 279(32):33352–33358

    CAS  PubMed  Google Scholar 

  • Pacheco R, Oliva H, Martinez-Navio JM, Climent N, Ciruela F, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R (2006) Glutamate released by dendritic cells as a novel modulator of T cell activation. J Immunol 177(10):6695–6704

    CAS  PubMed  Google Scholar 

  • Pacheco R, Gallart T, Lluis C, Franco R (2007) Role of glutamate on T-cell mediated immunity. J Neuroimmunol 185(1–2):9–19

    CAS  PubMed  Google Scholar 

  • Piani D, Frei K, Do KQ, Cuenod M, Fontana A (1991) Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133(2):159–162

    CAS  PubMed  Google Scholar 

  • Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-d-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 22(9):2429–2436

    CAS  PubMed  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34(1):1–26

    CAS  PubMed  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6(1):67–70

    CAS  PubMed  Google Scholar 

  • Platt SR (2007) The role of glutamate in central nervous system health and disease—a review. Vet J 173(2):278–286

    CAS  PubMed  Google Scholar 

  • Poulopoulou C, Davaki P, Koliaraki V, Kolovou D, Markakis I, Vassilopoulos D (2005a) Reduced expression of metabotropic glutamate receptor 2mRNA in T cells of ALS patients. Ann Neurol 58(6):946–949

    CAS  PubMed  Google Scholar 

  • Poulopoulou C, Markakis I, Davaki P, Nikolaou C, Poulopoulos A, Raptis E, Vassilopoulos D (2005b) Modulation of voltage-gated potassium channels in human T lymphocytes by extracellular glutamate. Mol Pharmacol 67(3):856–867

    CAS  PubMed  Google Scholar 

  • Poulopoulou C, Papadopoulou-Daifoti Z, Hatzimanolis A, Fragiadaki K, Polissidis A, Anderzanova E, Davaki P, Katsiari CG, Sfikakis PP (2008) Glutamate levels and activity of the T cell voltage-gated potassium Kv1.3 channel in patients with systemic lupus erythematosus. Arthritis Rheum 58(5):1445–1450

    CAS  PubMed  Google Scholar 

  • Puchert M, Engele J (2014) The peculiarities of the SDF-1/CXCL12 system: in some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell Tissue Res 355(2):239–253

    Google Scholar 

  • Reynolds JD, Amory DW, Grocott HP, White WD, Newman MF (2002) Change in plasma glutamate concentration during cardiac surgery is a poor predictor of cognitive outcome. J Cardiothorac Vasc Anesth 16(4):431–436

    PubMed  Google Scholar 

  • Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280(5369):1596–1599

    CAS  PubMed  Google Scholar 

  • Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98(11):6372–6377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarchielli P, Di Filippo M, Candeliere A, Chiasserini D, Mattioni A, Tenaglia S, Bonucci M, Calabresi P (2007) Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. J Neuroimmunol 188(1–2):146–158

    CAS  PubMed  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24(1–3):107–129

    CAS  PubMed  Google Scholar 

  • Sladeczek F, Momiyama A, Takahashi T (1993) Presynaptic inhibitory action of a metabotropic glutamate receptor agonist on excitatory transmission in visual cortical neurons. Proc Biol Sci 253(1338):297–303

    CAS  PubMed  Google Scholar 

  • Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6(1):62–66

    CAS  PubMed  Google Scholar 

  • Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Buhrer C, Hansen HH, Stryjecka-Zimmer M, Turski L, Ikonomidou C (2005) NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA 102(43):15605–15610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke KS, Turski L, Ikonomidou C (2009) Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol 132(4):435–445

    CAS  PubMed  Google Scholar 

  • Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015

    CAS  PubMed  Google Scholar 

  • Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8(1):169–179

    CAS  PubMed  Google Scholar 

  • Tay DL, Hoffbrand AV, Wickremasinghe GR (1996) Expression of c-fos and c-jun proteins and AP-1 binding activity during cell cycle progression of HL60 cells and phytohemagglutinin-stimulated lymphocytes. Exp Hematol 24(2):277–284

    CAS  PubMed  Google Scholar 

  • Weyand CM, Bryl E, Goronzy JJ (2000) The role of T cells in rheumatoid arthritis. Arch Immunol Ther Exp (Warsz) 48(5):429–435

    CAS  Google Scholar 

  • Wollmuth LP, Sobolevsky AI (2004) Structure and gating of the glutamate receptor ion channel. Trends Neurosci 27(6):321–328

    CAS  PubMed  Google Scholar 

  • Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30(5):646–655

    CAS  PubMed  Google Scholar 

  • Zlotnik A, Tsesis S, Gruenbaum BF, Ohayon S, Gruenbaum SE, Boyko M, Sheiner E, Brotfain E, Shapira Y, Teichberg VI (2012) Relationship between glutamate, GOT and GPT levels in maternal and fetal blood: a potential mechanism for fetal neuroprotection. Early Hum Dev 88(9):773–778

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no financial relationship with the organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mia Levite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganor, Y., Levite, M. The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. J Neural Transm 121, 983–1006 (2014). https://doi.org/10.1007/s00702-014-1167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1167-5

Keywords

Navigation