Skip to main content
Log in

Genomic sequence analysis of four new chrysanthemum virus B isolates: evidence of RNA recombination

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Chrysanthemums worldwide suffer from a high incidence of infection with chrysanthemum virus B (CVB), a member of the genus Carlavirus, family Betaflexiviridae. Three major lineages or strains of this virus have been found in India, but none have been characterized beyond the genetic variation they display in their coat protein genes. Here, we describe the analysis of four near-complete genome sequences (from the three lineages) representing the genetic diversity of these strains. Ranging in size from 8815 to 8855 nucleotides (excluding the polyA tail), these four isolates have a genome organization very similar to that of the recently reported Japanese isolate of CVB, with which they share between 70 and 73% genome-wide sequence identity. We present further evidence that recombination may feature quite prominently in the evolution of CVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Berg J (1986) Potential metal binding domains in nucleic acid binding proteins. Science 232:485–486

    Article  PubMed  CAS  Google Scholar 

  2. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047

    Article  PubMed  CAS  Google Scholar 

  3. Cavileer TD, Halpern BT, Lawrence DM, Podleckis EV, Martin RR, Hillman BI (1994) Nucleotide sequence of the carlavirus associated with blueberry scorch and similar diseases. J Gen Virol 75:711–720

    Article  PubMed  CAS  Google Scholar 

  4. Corpet F (1988) Multiple sequence alignment with hierarchial clustering. Nucl Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  5. Desbiez C, Lecoq H (2004) The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome. Arch Virol 149:1619–1632

    Article  PubMed  CAS  Google Scholar 

  6. Desbiez C, Lecoq H (2008) Evidence for multiple intraspecific recombinants in natural populations of Watermelon mosaic virus (WMV, Potyvirus). Arch Virol 153:1749–1754

    Article  PubMed  CAS  Google Scholar 

  7. Dinesen M, Lundmark M, Albrechtsen M (2009) Complete genome sequences of two isolates of Kalanchoe latent virus. Arch Virol 154(7):1173–1175

    Article  PubMed  CAS  Google Scholar 

  8. Erhardt M, Vetter G, Gilmer D, Bouzoubaa S, Richard K, Jonard G, Guilley H (2005) Subcellular localization of the Triple Gene Block movement proteins of Beet necrotic yellow vein virus by electron microscopy. Virology 340(1):155–166

    Article  PubMed  CAS  Google Scholar 

  9. Foster GD (1998) Carlavirus isolation and RNA extraction. In: Foster GD, Taylor SC (eds) Plant virology protocols, from virus isolation to transgenic resistance. Humana Press, Totowa, pp 145–150

    Google Scholar 

  10. Foster GD, Millar AW, Meehan BM, Mills PR (1990) Nucleotide sequence of the 3′-terminal region of Helenium virus S. J Gen Virol 71:1877–1880

    Article  PubMed  CAS  Google Scholar 

  11. Foster GD, Mills PR (1991) Translation of Potato virus S RNA in vitro: evidence of protein processing. Virus Genes 6:45–52

    Google Scholar 

  12. Fuji S, Yamamoto H, Inoue M, Yamashita K, Fukui Y, Furuya H, Naito H (2002) Complete nucleotide sequence of the genomic RNA of Aconitum latent virus (genus Carlavirus) isolated from Delphinium sp. Arch Virol 147:865–870

    Article  PubMed  CAS  Google Scholar 

  13. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582

    Article  PubMed  CAS  Google Scholar 

  14. Gorbalenya AE, Blinov VM, Donchenko AP, Koonin EV (1989) An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. J Mol Evol 28:256–268

    Article  PubMed  CAS  Google Scholar 

  15. Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  16. Hashimoto M, Komatsu K, Maejima K, Yamaji Y, Okano Y, Shiraishi T, Takahashi S, Kagiwada S, Namba S (2009) Complete nucleotide sequence and genome organization of Butterbur mosaic virus. Arch Virol 154(12):1955–1958

    Article  PubMed  CAS  Google Scholar 

  17. Hataya T, Uchino K, Arimoto R, Suda N, Sano T, Shikata E, Uyeda I (2000) Molecular characterization of Hop latent virus and phylogenetic relationships among viruses closely related to carlaviruses. Arch Virol 145:2503–2524

    Article  PubMed  CAS  Google Scholar 

  18. Heath L, van der Walt E, Varsani A, Martin DP (2006) Recombination patterns in aphthoviruses mirror those found in other picornaviruses. J Virol 80:11827–11832

    Article  PubMed  CAS  Google Scholar 

  19. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  20. Hu X, Karasev AV, Brown CJ, Lorenzen JH (2009) Sequence characteristics of potato virus Y recombinants. J Gen Virol 90:3033–3041

    Article  PubMed  CAS  Google Scholar 

  21. Klug A, Rhodes D (1987) ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem Sci 12:464–469

    Article  CAS  Google Scholar 

  22. Kraus J, Tzanetakis IE, Putnam ML, Martin RR (2008) Complete nucleotide sequence of an isolate of coleus vein necrosis virus from verbena. Arch Virol 153:381–384

    Article  PubMed  CAS  Google Scholar 

  23. Lawrence DM, Hillman BI (1994) Synthesis of infectious transcripts of Blueberry scorch carlavirus in vitro. J Gen Virol 75:2509–2512

    Article  PubMed  CAS  Google Scholar 

  24. Lee BY, Min BE, Ha JH, Lee MY, Paek KH, Ryu KH (2006) Genome structure and complete sequence of genomic RNA of Daphne virus S. Arch Virol 151:193–200

    Article  PubMed  CAS  Google Scholar 

  25. Lefeuvre P, Martin DP, Hoareau M, Naze F, Delatte H, Thierry M, Varsani A, Becker N, Reynaud B, Lett JM (2007a) Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol 88:3458–3468

    Article  PubMed  CAS  Google Scholar 

  26. Lefeuvre P, Lett JM, Reynaud B, Martin DP (2007b) Avoidance of protein fold disruption in natural virus recombinants. PLoS Pathog 3(11):e181. doi:10.1371/journal.ppat.0030181

  27. Lefeuvre P, Lett JM, Varsani A, Martin DP (2009) Widely conserved recombination patterns among single-stranded DNA viruses. J Virol 83(6):2697–2707

    Article  PubMed  CAS  Google Scholar 

  28. Lim S-H, Bragg JN, Ganesan U, Lawrence DM, Yu J, Isogai M, Hammond J, Jackson AO (2008) Triple gene block protein interactions involved in movement of Barley stripe mosaic virus. J Virol 82(10):4991–5006

    Article  PubMed  CAS  Google Scholar 

  29. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26(19):2462–2463

    Article  PubMed  CAS  Google Scholar 

  30. Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrovir 21:98–102

    Article  PubMed  CAS  Google Scholar 

  31. Martin DP, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    Article  PubMed  CAS  Google Scholar 

  32. Massa GA, Portantier M, Segretin ME, Bravo-Almonacid FF, Feingold SE (2008) Comparison of complete sequences of Potato rough dwarf virus and Potato virus P and their relationships to other carlaviruses. Arch Virol 153:1787–1789

    Article  PubMed  CAS  Google Scholar 

  33. Matousek J, Schubert J, Ptacek J, Kozlová P, Dědič P (2005) Complete nucleotide sequence and molecular probing of Potato virus S genome. Acta Virol 49(3):195–205

    PubMed  CAS  Google Scholar 

  34. Maydt J, Lengauer T (2006) Recco: recombination analysis using cost optimization. Bioinformatics 22(9):1064–1071

    Article  PubMed  CAS  Google Scholar 

  35. Maynard Smith J (1992) Analysing the mosaic structure of genes. J Mol Evol 34:126–129

    Google Scholar 

  36. Menzel W, Winter S, Vetten HJ (2010) Complete nucleotide sequence of the type isolate of Cowpea mild mottle virus from Ghana. Arch Virol 155:2069–2073

    Article  PubMed  CAS  Google Scholar 

  37. Novitsky V, Wang R, Margolin L, Baca J, Rossenkhan R, Moyo S, van Widenfelt E, Essex M (2011) Transmission of single and multiple viral variants in primary HIV-1 subtype C infection. PLoS One 6(2):e16714. doi:10.1371/journal.pone.0016714

  38. Nyström K, Le Gall-Reculé G, Grassi P, Abrantes J, Ruvoën-Clouet N, Le Moullac-Vaidye B, Lopes AM, Esteves PJ, Strive T, Marchandeau S, Dell A, Haslam SM, Le Pendu J (2011) Histo-blood group antigens act as attachment factors of rabbit hemorrhagic disease virus infection in a virus strain-dependent manner. PLoS Pathog 7(8):e1002188. doi:10.1371/journal.ppat.1002188

  39. Padidam M, Sawyer S, Fauquet C (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  PubMed  CAS  Google Scholar 

  40. Poke FS (2008) Hop mosaic virus: complete nucleotide sequence and relationship to other carlaviruses. Arch Virol 153:1615–1619

    Article  PubMed  CAS  Google Scholar 

  41. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    Article  PubMed  CAS  Google Scholar 

  42. Ohkawa A, Yamada M, Sayama H, Sugiyama N, Okuda S, Natsuaki T (2007) Complete nucleotide sequence of a Japanese isolate of Chrysanthemum virus B (genus Carlavirus). Arch Virol 152(12):2253–2258

    Article  PubMed  CAS  Google Scholar 

  43. Ram R, Verma N, Singh AK, Singh L, Hallan V, Zaidi AA (2005) Indexing and production of virus-free chrysanthemums. Biol Plant 49:149–152

    Article  Google Scholar 

  44. Richard CL, Stephen DW, Keri LD (2009) The complete nucleotide sequence and genome organization of red clover vein mosaic virus (genus Carlavirus). Arch Virol 154:891–894

    Article  Google Scholar 

  45. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  46. Scott SW, Zimmerman MT (2008) The complete sequence of ligustrum necrotic ringspot virus, a novel carlavirus. Arch Virol 153:393–396

    Article  PubMed  CAS  Google Scholar 

  47. Singh L, Hallan V, Jabeen N, Singh AK, Ram R, Martin DP, Zaidi AA (2007) Coat protein gene diversity among Chrysanthemum virus B isolates from India. Arch Virol 152:405–413

    Article  PubMed  CAS  Google Scholar 

  48. Tan Z, Wada Y, Chen J, Ohshima K (2004) Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus. J Gen Virol 85:2683–2696

    Article  PubMed  CAS  Google Scholar 

  49. Tsuneyoshi T, Matsumi T, Deng TC, Sako I, Sumi S (1998) Differentiation of Allium carlaviruses isolated from different parts of the world based on the viral coat protein sequence. Arch Virol 143:1093–1107

    Article  PubMed  CAS  Google Scholar 

  50. Tugume AK, Mukasa SB, Kalkkinen N, Valkonen JPT (2010) Recombination and selection pressure in the ipomovirus sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweet potato in the centre of evolution in East Africa. J Gen Virol 91:1092–1108

    Article  PubMed  CAS  Google Scholar 

  51. Van Dijk P (1993) Carlavirus isolates from cultivated Allium species represent three viruses. Neth J Plant Pathol 99:233–257

    Article  Google Scholar 

  52. Wetter C, Milne RG (1981) Carlaviruses. In: Kurstak E (ed) Plant virus infections: comparative diagnosis. Elsevier/North Holland, Amesterdam, pp 695–730

    Google Scholar 

  53. Wu B, Blanchard-Letort A, Liu Y, Zhou G, Wang X, Elena SF (2011) Dynamics of molecular evolution and phylogeography of barley yellow dwarf virus-PAV. PLoS One 6(2):e16896. doi:10.1371/journal.pone.0016896

  54. Xianzhou N (2009) The complete nucleotide sequence and genome structure of potato latent virus. Arch Virol 154:361–364

    Article  Google Scholar 

  55. Yang Z, Holmes EC (2007) Bayesian estimates of the evolutionary rate and age of Hepatitis B. Virus J Mol Evol 65:197–205

    CAS  Google Scholar 

  56. Zavriev SK, Kanyuka KV, Levay KE (1991) The genome organization of Potato virus M RNA. J Gen Virol 72:9–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, Council of Scientific and Industrial Research, Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, for providing the necessary facilities to carry out the work, and to Digvijay Singh for technical help with nucleotide sequencing. A fellowship to LS and financial support from the Department of Biotechnology, Govt. of India, and Council of Scientific and Industrial Research are duly acknowledged. This is IHBT publication number: 2206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Hallan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2011_1190_MOESM1_ESM.doc

Supplementary Fig. 1 ClustalW multiple alignment of the complete genomes of five CVB isolates. Sequences in green boxes represent initiation codons, and those in red boxes, stop codons (DOC 170 kb)

705_2011_1190_MOESM2_ESM.doc

Supplementary Fig. 2 ClustalW multiple alignment of the replicase, TGB1, TGB2, TGB3, CP and NABP protein sequences from five CVB isolates. Conserved motifs are indicated by green shading (DOC 77 kb)

Supplementary Fig. 3 (JPEG 95.6 kb)

705_2011_1190_MOESM4_ESM.doc

Supplementary Fig. 4 Mechanical inoculation of various CVB isolates on Petunia hybrida, showing variation in biological reaction. a Mottling induced by CVB-UK. b Narrowing of leaf lamina induced by CVB-TN. c Leaf deformation induced by CVB-UP. d Mosaic induced by CVB-AR (partially sequenced isolate of CVB Arunachal Pradesh 109287621). e Mosaic puckering induced by CVB-PB (DOC 1155 kb)

Supplementary Table 1 (DOC 53 kb)

Supplementary Table 2 (DOC 47 kb)

Supplementary Table 3 (DOC 28 kb)

Supplementary Table 4 (DOC 57 kb)

Supplementary Table 5 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, L., Hallan, V., Martin, D.P. et al. Genomic sequence analysis of four new chrysanthemum virus B isolates: evidence of RNA recombination. Arch Virol 157, 531–537 (2012). https://doi.org/10.1007/s00705-011-1190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1190-x

Keywords

Navigation