Skip to main content
Log in

Use of Tracer Kinetic Models for Selection of Semi-Quantitative Features for DCE-MRI Data Classification

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The aim of this study was to identify, on the basis of simulated tracer kinetic data, the best subset of semi-quantitative features suitable for classification of dynamic contrast-enhanced magnetic resonance imaging data. 1926 time concentration curves (TCCs) of Type III, IV and V [according to the classification of Daniel et al. (Radiology 209(2): 499–509 (1998))] were simulated using the gamma capillary transit time model and the Parker’s arterial input function. TCCs were converted in time intensity curves (TICs) corresponding to a gradient echo sequence. Seventeen semi-quantitative shape descriptors were extracted from each TIC. Feature selection in combination with classification and regression tree was adopted. Several acquisition parameters (total duration, time resolution, noise level) were used to simulate TICs to evaluate the influence on the features selected and on the overall accuracy. The highest accuracy (99.8 %) was obtained using 5 features, total duration 9 min and time resolution 60 s. However, an accuracy of 93.5 % was achieved using only 3 features, total duration 6 min and time resolution 60 s. This latter configuration has the advantage of requiring the smallest number of features (easily understandable by the radiologist) and not a very long duration (reduced patient discomfort).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.S. Tofts, J. Magn. Reson. Imaging 7, 91–101 (1997)

    Article  Google Scholar 

  2. P.S. Tofts, G. Brix, D.L. Buckley, J.L. Evelhoch, E. Henderson, M.V. Knopp, H.B. Larsson, T.Y. Lee, N.A. Mayr, G.J. Parker, R.E. Port, J. Taylor, R.M. Weisskoff, J. Magn. Reson. Imaging 10, 223–232 (1999)

    Article  Google Scholar 

  3. G. Brix, W. Semmler, R. Port, L.R. Schand, G. Layer, W.J. Lorenz, J. Comput. Assist. Tomogr. 15, 621–628 (1991)

    Article  Google Scholar 

  4. K.S. St. Lawrence, T.-Y. Lee, J. Cereb. Blood Flow Metab. 18, 1365–1377 (1998)

    Article  Google Scholar 

  5. N.E. Simpson, Z. He, J.L. Evelhoch, Magn. Reson. Med. 42, 42–52 (1999)

    Article  Google Scholar 

  6. M.C. Schabel, Magn. Reson. Med. (2012). doi:10.1002/mrm.24162

    Google Scholar 

  7. B.L. Daniel, Y.F. Yen, G.H. Glover, D.M. Ikeda, R.L. Birdwell, A.M. Sawyer-Glover, J.W. Black, S.K. Plevritis, S.S. Jeffrey, R.J. Herfkens, Radiology 209(2), 499–509 (1998)

    Google Scholar 

  8. C. Lavini, M.C. de Jonge, M.G. van de Sande, P.P. Tak, A.J. Nederveen, M. Maas, Magn. Reson. Imaging 25(5), 604–612 (2007)

    Article  Google Scholar 

  9. H.J.W.L. Aerts, K. Jaspers, W.H. Backes, Phys. Med. Biol. 56, 5665–5678 (2011)

    Article  Google Scholar 

  10. M.C. Schabel, G.R. Morrell, K.Y. Oh, C.A. Walczak, R.B. Barlow, L.A. Neumayer, J. Magn. Reson. Imaging 31(6), 1371–1378 (2010)

    Article  Google Scholar 

  11. L. Blomqvist, P. Fransson, T. Hindmarsh, Eur. Radiol. 8(5), 781–787 (1998)

    Article  Google Scholar 

  12. A.A. Tzacheva, K. Najarian, J.P. Brockway, J. Magn. Reson. Imaging 17(3), 337–342 (2003)

    Article  Google Scholar 

  13. T. Twellmann, A. Meyer-Baese, O. Lange, S. Foo, T.W. Nattkemper, Eng. Appl. Artif. Intell. 21, 129–140 (2008)

    Article  Google Scholar 

  14. L.A. Meinel, A.H. Stolpen, K.S. Berbaum, L.L. Fajardo, J.M. Reinhardt, J. Magn. Reson. Imaging 25(1), 89–95 (2007)

    Article  Google Scholar 

  15. S.O. Lee, J.H. Kim, J.S. Park, J.M. Chang, S.J. Park, Y.S. Jung, S. Tak, W.K. Moon. Texture analysis of lesion perfusion volumes in dynamic contrast-enhanced breast MRI, in Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro ISBI 2008, 2008, pp. 1545–1548

  16. H. Degani, V. Gusis, D. Weinstein, S. Fields, S. Strano, Nature 3, 780–782 (1997)

    Article  Google Scholar 

  17. M. Sansone, R. Fusco, A. Petrillo, M. Petrillo, M. Bracale, Med. Biol. Eng. Comput. 49(4), 485–495 (2011)

    Article  Google Scholar 

  18. R. Fusco, M. Sansone, M. Petrillo, A. Avallone, P. Delrio, A. Petrillo, in Dynamic Contrast Enhanced Magnetic Resonance Imaging in Rectal CancerA Multidisciplinary Approach to Management, ed. by G.A. Santoro. (InTech, 2011)

  19. R. Rusco, M. Sansone, C. Sansone, A. Petrillo, Segmentation and classification of breast lesions using dynamic and textural features in dynamic contrast enhanced-magnetic resonance imaging in 2012, in Proceedings of the 25th International Symposium on Computer-Based Medical Systems (CBMS), 2012, pp. 1–4

  20. R. Fusco, M. Sansone, S. Maffei, N. Raiano, A. Petrillo, J. Biomed. Graph. Comput. 2(2), p23 (2012)

    Google Scholar 

  21. R. Fusco, M. Sansone, M. Petrillo, A. Petrillo, J. Med. Biol. Eng. (in press). doi:10.5405/jmbe.1097.0

  22. G.J. Parker, C. Roberts, A. Macdonald, G.A. Buonaccorsi, S. Cheung, D.L. Buckley, A. Jackson, Y. Watson, K. Davies, G.C. Jayson, Magn. Reson. Med. 56(5), 993–1000 (2006)

    Article  Google Scholar 

  23. M.V. Knopp, E. Weiss, H.P. Sinn, J. Mattern, H. Junkermann, J. Radeleff, A. Magener, G. Brix, S. Delorme, I. Zuna, G. van Kaick, J. Magn. Reson. Imaging 10(3), 260–266 (1999)

    Article  Google Scholar 

  24. C.D. Pham, T.P. Roberts, N. van Bruggen, O. Melnyk, J. Mann, N. Ferrara, R.L. Cohen, R.C. Brash, Cancer Invest. 16(4), 225–230 (1998)

    Article  Google Scholar 

  25. J.U. Harrer, G.J.M. Parker, H.A. Haroon, D.L. Buckley, K. Embelton, C. Roberts, D. Balériaux, A. Jackson, J. Magn. Reson. Imaging 20, 748–757 (2004)

    Article  Google Scholar 

  26. D.L. Buckley, Magn. Reson. Med. 47, 601–606 (2002)

    Article  Google Scholar 

  27. J.L. Evelhoch, J. Magn. Reson. Imaging 10(3), 254–259 (1999)

    Article  Google Scholar 

  28. X.M. Zhang, D. Yu, H.L. Zhang, Y. Dai, D. Bi, Z. Liu, M.R. Prince, C. Li, J. Magn. Reson. Imaging 27(6), 1309–1316 (2008)

    Article  Google Scholar 

  29. P. Torricelli, A. Pecchi, G. Luppi, R. Romagnoli, Abdom. Imaging 28(1), 19–27 (2003)

    Article  Google Scholar 

  30. S. Walker-Samuel, M.O. Leach, D.J. Collins, Phys. Med. Biol. 52(3), 589–601 (2007)

    Article  Google Scholar 

  31. N. Tuncbilek, H.M. Karakas, S. Altaner, Abdom. Imaging 29(2), 166–172 (2004)

    Article  Google Scholar 

  32. C. Heyes, A.R. Padhani, M.O. Leach, NMR Biomed. 15, 154–163 (2002)

    Article  Google Scholar 

  33. C.K. Kuhl, P. Mielcareck, S. Klaschik, C. Leutner, E. Wardelmann, J. Gieseke, H.H. Schild, Radiology 211, 101–110 (1999)

    Article  Google Scholar 

  34. R. Fusco, S. Filice, V. Granata, Y. Mandato, A. Porto, M. D’Aiuto, M. Rinaldo, M. Di Bonito, M. Sansone, C. Sansone, A. Rotondo, A. Petrillo, JBISE. doi:10.4236/jbise.2013.63A052

  35. T.S. Koh, W. Shi, C.H. Thng, J.W. Kwek, S. Bisdas, J.B. Khoo, Phys. Med. Biol. 57(15), N279–N294 (2012)

    Article  Google Scholar 

  36. T.S. Koh, S. Bisdas, D.M. Koh, C.H. Thng, J. Magn. Reson. Imaging 34(6), 1262–1276 (2011)

    Article  Google Scholar 

  37. B.K. Szabo, P. Aspelin, M.K. Wiberg, Acad. Radiol. 11, 1344–1354 (2004)

    Article  Google Scholar 

  38. J. Juntu, J. Sijbers, S. De Backer, J. Rajan, D. Van Dyck, J. Magn. Reson. Imaging 31(3), 680–689 (2010)

    Article  Google Scholar 

  39. L. Breiman, Classification and regression trees (Wadsworth International Group, Belmont, 1984)

    MATH  Google Scholar 

  40. K. Kroll, N. Wilke, M. Jerosch-Herold, Y. Wang, Y. Zhang, R.J. Bache, J.B. Bassingthwaighte, Am. J. Physiol. 271(4 Pt 2), H1643–H1655 (1996)

    Google Scholar 

  41. T.S. Koh, V. Zeman, J. Darko, T.Y. Lee, M.F. Milosevic, M. Haider, P. Warde, I.W. Yeung, Phys. Med. Biol. 46(5), 1519–1538 (2001)

    Article  Google Scholar 

  42. T.S. Koh, L.H. Cheong, C.K. Tan, C.C. Lim, Neuroimage 30(2), 426–435 (2006)

    Article  Google Scholar 

  43. K.B. Larson, J. Markham, M.E. Raichl, J. Cereb. Blood Flow Metab. 7, 443–463 (1987)

    Article  Google Scholar 

  44. R. Kohavi, G.H. John, Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  45. M.A. Hall, Correlation-based feature subset selection for machine learning (Hamilton, New Zealand, 1998)

    Google Scholar 

  46. H. Liu, R. Setiono, A probabilistic approach to feature selection—a filter solution, in Proceedings of the 13th International Conference on Machine Learning, 1996, pp. 319–327

  47. Software available online: http://www.cs.waikato.ac.nz/ml/weka/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petrillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fusco, R., Petrillo, A., Petrillo, M. et al. Use of Tracer Kinetic Models for Selection of Semi-Quantitative Features for DCE-MRI Data Classification. Appl Magn Reson 44, 1311–1324 (2013). https://doi.org/10.1007/s00723-013-0481-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0481-7

Keywords

Navigation