Skip to main content

Advertisement

Log in

Arginine pathways and the inflammatory response: Interregulation of nitric oxide and polyamines: Review article

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary.

An early response to an acute inflammatory insult, such as wound healing or experimental glomerulonephritis, is the conversion of arginine to the cytostatic molecule nitric oxide (NO). This ‘anti-bacterial’ phase is followed by the conversion of arginine to ornithine, which is the precursor for the pro-proliferative polyamines as well as proline for the production of extracellular matrix. This latter, pro-growth phase constitutes a ‘repair’ phase response. The temporal switch of arginine as a substrate for the cytostatic iNOS/NO axis to the pro-growth arginase/ ornithine/polyamine and proline axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Arginine is also the precursor for another biogenic amine, agmatine. Here we describe the capacity of these three arginine pathways to interregulate, and propose a model whereby agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in the inflammatory response by acting as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Due to the pathophysiologic and therapeutic potential, we will further examine the antiproliferative effects of agmatine on the polyamine pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satriano, J. Arginine pathways and the inflammatory response: Interregulation of nitric oxide and polyamines: Review article. Amino Acids 26, 321–329 (2004). https://doi.org/10.1007/s00726-004-0078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-004-0078-4

Navigation