Skip to main content
Log in

PRODH variants and risk for schizophrenia

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Schizophrenia is a common, devastating neuropsychiatric disorder whose etiology is largely unknown. Multiple studies in humans and in mouse and fly models suggest a role for proline and PRODH, the gene encoding the first enzyme in the pathway of proline catabolism, in contributing risk for schizophrenia. Other studies, however, reach contradictory conclusions. Here, we provide a critical review of the data in the context of what is known about proline metabolism and suggest studies for the future. Overall, there is considerable evidence supporting a role for certain loss of function PRODH variants conferring risk for schizophrenia in some individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afenjar A, Moutard M-L, Doummar D, Guët A, Rabier D, Vermersch A-I, Mignot C, Burglen L, Heron D, Thioulouse E, de Villemeur TB, Campion D, Rodriguez D (2007) Early neurological phenotype in 4 children with biallelic PRODH mutations. Brain Dev 29:547–552

    Article  PubMed  Google Scholar 

  • Bender H-U, Almashanu S, Steel G, Hu CA, Lin WW, Pulver AE, Valle D (2005) Functional consequences of PRODH mutations associated with hyperprolinemia and schizophrenia. Am J Hum Genet 76:409–420

    Article  PubMed  CAS  Google Scholar 

  • Blake RL (1972) Animal model for hyperprolinaemia: deficiency of mouse proline oxidase activity. Biochem J 129:809–811

    Google Scholar 

  • Blake RL, Russell ES (1972) Hyperprolinemia and prolinuria in a new inbred strain of mice, PRO/Re. Science 17:809–811

    Article  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    PubMed  CAS  Google Scholar 

  • Diaz-Asper CM, Goldberg TE, Kolachana BS, Straub RE, Egan MF, Weinberger DR (2008) Genetic variation in catechol-o-methyltransferase: effects on working memory in schizophrenic patients, their siblings and healthy controls. Biol Psychiatry 63:72–79

    Article  PubMed  CAS  Google Scholar 

  • Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, Valle D, Pulver AE (2005) Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 77:918–936

    Article  PubMed  CAS  Google Scholar 

  • Fan JB, Ma J, Zhang CS, Tang JX, Gu NF, Feng GY, St Clair D, He L (2003) A family-based association study of T1945C polymorphism in the proline dehydrogenase gene and schizophrenia in the Chinese population. Neurosci Lett 338:252–254

    Article  PubMed  CAS  Google Scholar 

  • Gogos JA, Gerber DJ (2006) Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends Pharmacol Sci 27:226–233

    Article  PubMed  CAS  Google Scholar 

  • Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR, Nadler JV, Karayiorgou M (1999) The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 21:434–439

    Article  PubMed  CAS  Google Scholar 

  • Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Zoltick B, Weinberger DR, Meyer-Lindenberg A (2008) Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biol Psychiatry 63:475–483

    Article  PubMed  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression and neuopathology: on the matter of their convergence. Mol Psych 10:40–68

    Article  CAS  Google Scholar 

  • Hayward DC, Delaney SJ, Campbell HD, Ghysen A, Benzer S, Kasparzak AB, Cotsell JN, Young IG, Gabor Miklos GL (1993) The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis. Proc Natl Acad Sci USA 90:2979–2983

    Article  PubMed  CAS  Google Scholar 

  • Hu C-A, Donald SP, Yu J, Lin WW, Liu Z, Steel G, Obie C, Valle D, Phang JM (2007) Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol Cell Biochem 295:85–92

    Article  PubMed  CAS  Google Scholar 

  • Jacquet H, Raux G, Thibaut F, Hecketsweiler B, Houy E, Demilly C, Haouzir S, Allio G, Fouldrin G, Drouin V, Bou J, Petit M, Campion D, Frébourg T (2002) PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum Mol Genet 11:2243–2249

    Article  PubMed  CAS  Google Scholar 

  • Jacquet H, Berthelot J, Bonnemains C, Simard G, Saugier-Veber P, Raux G, Campion D, Bonneau D, Frebourg T (2003) The severe form of type I hyperprolinaemia results from homozygous inactivation of the PRODH gene. J Med Genet 40:E7

    Article  PubMed  CAS  Google Scholar 

  • Jaeken J, Goemans N, Fryns JP, Farncois I, DeZegher F (1996) Association of hyperprolinemia type I and heparin cofactor II deficiency with CATCH22 syndrome: evidence for a contiguous gene syndrome locating the proline oxidase gene. J Inherit Metab Dis 19:275–277

    Article  PubMed  CAS  Google Scholar 

  • Karayiorgou M, Gogos JA (2004) The molecular genetics of the 22q11-associated schizophrenia. Mol Brain Res 132:95–104

    Article  PubMed  CAS  Google Scholar 

  • Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, Gos A, Nestadt G, Wolyniec PS, Lasseter VK, Eisen H, Childs B, Kazazian HH, Kucherlapati R, Antonarakis SE, Pulver AE, Housman DE (1995) Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 92:7612–7616

    Article  PubMed  CAS  Google Scholar 

  • Lang UE, Puls I, Müller DJ, Strutz-Seebohm N, Gallinat J (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20:687–702

    Article  PubMed  CAS  Google Scholar 

  • Li T, Ma X, Sham PC, Sun X, Hu X, Wang Q, Meng H, Deng W, Liu X, Murray RM, Collier DA (2004) Evidence for association between novel polymorphisms in the PRODH gene and schizophrenia in a Chinese population. Am J Med Genet 129B:13–15

    Article  PubMed  Google Scholar 

  • Li M, Li C, Guan W (2008) Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet e-pub:

  • Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen Y-J, Roos JL, Rapoport JL, Gogos JA, Karayiorgou M (2002a) Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 99:16859–16864

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML, Lenane M, Robertson B, Mijsman EM, Rapoport JL, Gogos JA, Karayiorgou M (2002b) Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 99:3717–3722

    Article  PubMed  CAS  Google Scholar 

  • Liu HC, Lin SK, Liu SK, Chen SL, Hu CJ, Chang JG, Leu SJ (2004) DAT polymorphism and diverse clinical manifestations in methamphetamine abusers. Psychiatr Genet 14:33–37

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Borchert GL, Surazynski A, Hu CA, Phang JM (2006) Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/sueproxides, NFAT and MEK/ERK signaling. Oncogene 25:6540–6547

    Google Scholar 

  • McDermid HE, Morrow BE (2002) Genomic disorders on 22q11. Am J Hum Genet 70:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Norton N, Williams HJ, Owen MJ (2006) An update on the genetics of schizophrenia. Curr Opin Psychiatr 19:158–164

    Article  Google Scholar 

  • Paterlini M, Zakharenko SS, Lai W-S, Qin J, Zhang H, Mukai J, Westphal KGC, Olivier B, Sulzer D, Pavlidis P, Siegelbaum SA, Karayiorgou M, Gogos JA (2005) Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizohprenia-related phenotypes in mice. Nat Neurosci 8:1586–1594

    Article  PubMed  CAS  Google Scholar 

  • Phang JM, Hu C-A, Valle D (2001) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw Hill, New York, pp 1821–1838

    Google Scholar 

  • Pulver AE, Karayiorgou M, Lasseter VK, Wolyniec P, Kasch L, Antonarakis S, Housman D, Kazazian HH, Meyers D, Nestadt G et al (1994) Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12–q13.1: Part 2. Am J Med Genet 54:36–43

    Article  PubMed  CAS  Google Scholar 

  • Raux G, Bumsel E, Hecketsweiler B, van Amelsvoort T, Zinkstok J, Manouvrier-Hanu S, Fantini C, Brévière G-M, Di Rosa G, Pustorino G, Vogels A, Swillen A, Legallic S, Bou J, Opolczynski G, Drouin-Garraud V, Lemarchand M, Philip N, Gérard-Desplanches A, Carlier M, Phillippe A, Nolen MC, Heron D, Sarda P, LaCombe D, Coizet C, Alembik Y, Layet V, Afenjar A, Hanneuin D, Demily C, Petit M, Thibaut F, Frebourg T, Campion D (2007) Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum Mol Genet 16:83–91

    Article  PubMed  CAS  Google Scholar 

  • Renick SE, Kleven DT, Chan J, Stenius K, Milner TA, Pickel VM, Fremeau RT Jr (1999) The mammalian brain high-affinity L-proline transporter is enriched preferentially in synaptic vesicles in a subpopulation of excitatory nerve terminals in rat forebrain. J Neurosci 19:21–33

    PubMed  CAS  Google Scholar 

  • Ross CA, Margolis RL, Reading SAJ, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    Article  PubMed  CAS  Google Scholar 

  • Sawa A, Snyder SH (2002) Schizophrenia: diverse approaches to a complex disease. Science 296:692–695

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Schafer IA, Efron ML (1961) New renal tubular amino acid transport system and a new hereditary disorder of amino acid metabolism. Nature 192:672

    Article  CAS  Google Scholar 

  • Sei Y, Ren-Patterson R, Li Z, Tunbridge EM, Egan MF, Kolachana B, Weinberger DR (2007) Neuregulin 1-induced cell migration is impaired in schizophrenia: association with neuregulin 1 and catechol-o-methyltransferase gene polymorphisms. Mol Psych 12:946–957

    Article  CAS  Google Scholar 

  • Shafqat S, Velaz-Faircloth M, Henzi VA, Whitney KD, Yang-Feng TL, Seldin MF, Fremeau RTJ (1995) Human brain-specific L-proline transporter: molecular cloning, functional expression and chromosomal localization of the gene in human and mouse genomes. Mol Pharmacol 48:219–229

    PubMed  CAS  Google Scholar 

  • Szaesko PR, Bilder RM, Dunlop JA, Walder DJ, Lieberman JA (1999) Longitudinal assessment ofmethylphenidate effects on oral word production and symptoms in first episode schizophrenia at acute and stabilized phases. Biol Psychiatry 45:680–686

    Article  Google Scholar 

  • Valle DL, Goodman SI, Applegarth DA, Shih VE, Phang JM (1976) Type II hyperprolinemia: D1-pyrroline–5-carboxylic acid dehydrogenase deficiency in cultured skin fibroblasts and circulating lymphocytes. J Clin Invest 58:598–603

    Article  PubMed  CAS  Google Scholar 

  • Weksberg R, Stachon AC, Squire JA, Moldovan L, Bayani J, Meyn S, Chow E, Bassett AS (2007) Molecular characterization of deletion breakpoints in adults with 22q11 deletion syndrome. Hum Genet 120:837–845

    Article  PubMed  CAS  Google Scholar 

  • Williams HJ, Williams N, Spurlock G, Norton N, Ivanov D, McCreadie RG, Preece A, Sharkey V, Jones S, Zammit S, Nikolov I, Kehaiov I, Thapar A, Murphy KC, Kirov G, Owen MJ, O’Donovan MC (2003a) Association between PRODH and schizophrenia is not confirmed. Mol Psych 8:644–645

    Article  CAS  Google Scholar 

  • Williams HJ, Williams N, Spurlock G, Norton N, Zammit S, Kirov G, Owen MJ, O’Donovan MC (2003b) Detailed analysis of PRODH and PsPRODH reveals no association with schizophrenia. Am J Med Genet 120B:42–46

    Article  CAS  PubMed  Google Scholar 

  • Williams NM, O’Donovan MC, Owen MJ (2006) Chromosome 22 deletion syndrome and schizophrenia. Int Rev Neurobiol 73:1–27

    Article  PubMed  CAS  Google Scholar 

  • Williams HJ, Owen MJ, O’Donovan MC (2007) Is COMT a susceptibility gene for schizophrenia? Schizophr Bull 33:635–641

    Article  PubMed  Google Scholar 

  • Zeggini E, Scott LJ, Saxena R, Voight BF, Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet e-pub:

  • Zinkstok J, Schmitz N, van Amelsvoort T, Moeton M, Baas F, Linszen D (2008) Genetic variation in COMT and PRODH is associated with brain anatomy in patients with schizophrenia. Genes. Brain Behav 7:61–69

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Sandy Muscelli for assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willis, A., Bender, H.U., Steel, G. et al. PRODH variants and risk for schizophrenia. Amino Acids 35, 673–679 (2008). https://doi.org/10.1007/s00726-008-0111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0111-0

Keywords

Navigation