Skip to main content
Log in

Biochemical characteristics and inhibitor selectivity of mouse indoleamine 2,3-dioxygenase-2

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The first step in the kynurenine pathway of tryptophan catabolism is the cleavage of the 2,3-double bond of the indole ring of tryptophan. In mammals, this reaction is performed independently by indoleamine 2,3-dioxygenase-1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and the recently discovered indoleamine 2,3-dioxygenase-2 (IDO2). Here we describe characteristics of a purified recombinant mouse IDO2 enzyme, including its pH stability, thermal stability and structural features. An improved assay system for future studies of recombinant/isolated IDO2 has been developed using cytochrome b 5 as an electron donor. This, the first description of the interaction between IDO2 and cytochrome b 5, provides further evidence of the presence of a physiological electron carrier necessary for activity of enzymes in the “IDO family”. Using this assay, the kinetic activity and substrate range of IDO2 were shown to be different to those of IDO1. 1-Methyl-d-tryptophan, a current lead IDO inhibitor used in clinical trials, was a poor inhibitor of both IDO1 and IDO2 activity. This suggests that its immunosuppressive effect may be independent of pharmacological inhibition of IDO enzymes, in the mouse at least. The different biochemical characteristics of the mouse IDO proteins suggest that they have evolved to have distinct biological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Austin CJD, Mizdrak J, Matin A, Sirijovski N, Kosim-Satyaputra P, Willows RD, Roberts TH, Truscott RJW, Polekhina G, Parker MW, Jamie JF (2004) Optimised expression and purification of recombinant human indoleamine 2,3-dioxygenase. Protein Expr Purif 37:392–398. doi:10.1016/j.pep.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  • Austin CJ, Astelbauer F, Kosim-Satyaputra P, Ball HJ, Willows RD, Jamie JF, Hunt NH (2009) Mouse and human indoleamine 2,3-dioxygenase display some distinct biochemical and structural properties. Amino Acids 36:99–106. doi:10.1007/s00726-008-0037-6

    Article  CAS  PubMed  Google Scholar 

  • Ball HJ, Sanchez-Perez A, Weiser S, Austin CJD, Astelbauer F, Miu J, McQuillan JA, Stocker R, Jermiin LS, Hunt NH (2007) Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396:203–213

    Article  CAS  PubMed  Google Scholar 

  • Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH (2009) Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2008.01.005

  • Beadle GW, Mitchell HK, Nyc JF (1947) Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by neurospora. Proc Natl Acad Sci USA 33:155–158. doi:10.1073/pnas.33.6.155

  • Calalb MB, Polte TR, Hanks SK (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15:954–963

    CAS  PubMed  Google Scholar 

  • Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87

    Article  CAS  PubMed  Google Scholar 

  • Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32:W96–W99

    Article  CAS  PubMed  Google Scholar 

  • Danesch U, Hashimoto S, Renkawitz R, Schutz G (1983) Transcriptional regulation of the tryptophan oxygenase gene in rat liver by glucocorticoids. J Biol Chem 258:4750–4753

    CAS  PubMed  Google Scholar 

  • Danesch U, Gloss B, Schmid W, Schutz G, Schule R, Renkawitz R (1987) Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements. EMBO J 6:625–630

    CAS  PubMed  Google Scholar 

  • Delcarte J, Fauconnier M, Jacques P, Matsui K, Thonart P, Marlier M (2003) Optimisation of expression and immobilized metal ion affinity chromatographic purification of recombinant (His)6-tagged cytochrome P450 hydroperoxide lyase in Escherichia coli. J Chromatogr B Anal Technol Biomed Life Sci 786:229–236. doi:10.1016/S1570-0232(02)00815-2

    Article  CAS  Google Scholar 

  • Fallarino I, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077. doi:10.1038/sj.cdd.4401073

    Article  CAS  PubMed  Google Scholar 

  • Feis A, Marzocchi MP, Paoli M, Smulevich G (1994) Spin state and axial ligand bonding in the hydroxide complexes of metmyoglobin, methemoglobin, and horseradish peroxidase at room and low temperatures. Biochemistry 33:4577–4583. doi:10.1021/bi00181a019

    Article  CAS  PubMed  Google Scholar 

  • Frey AB, Monu N (2008) Signaling defects in anti-tumor T cells. Immunol Rev 222:192–205. doi:10.1111/j.1600-065X.2008.00606.x

    Article  CAS  PubMed  Google Scholar 

  • Haber R, Bessette D, Hulihangiblin B, Durcan MJ, Goldman D (1993) Identification of tryptophan 2,3-dioxygenase RNA in rodent brain. J Neurochem 60:1159–1162. doi:10.1111/j.1471-4159.1993.tb03269.x

    Article  CAS  PubMed  Google Scholar 

  • Hansen AM, Driussi C, Turner V, Takikawa O, Hunt NH (2000) Tissue distribution of indoleamine 2,3-dioxygenase in normal and malaria-infected tissue. Redox Rep 5:112–115. doi:10.1179/135100000101535384

    Article  CAS  PubMed  Google Scholar 

  • Hansen AM, Ball HJ, Mitchell AJ, Miu J, Takikawa O, Hunt NH (2004) Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. Int J Parasitol 34:1309–1319. doi:10.1016/j.ijpara.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  • Harrison RG, Weiner JS (1949) Vascular patterns of the mammalian testis and their functional significance. J Exp Biol 26:304–316

    CAS  PubMed  Google Scholar 

  • Heyes MP, Morrison PF (1997) Quantification of local de novo synthesis versus blood contributions to quinolinic acid concentrations in brain and systemic tissues. J Neurochem 68:280–288. doi:10.1046/j.1471-4159.1997.68010280.x

    Article  CAS  PubMed  Google Scholar 

  • Heyes MP, Brew BJ, Saito K, Quearry BJ, Price RW, Lee K, Bhalla RB, Der M, Markey SP (1992a) Interrelationships between quinolinic acid, neuroactive kynurenines, neopterin and beta-2-microglobulin in cerebrospinal-fluid and serum of HIV-1-infected patients. J Neuroimmunol 40:71–80. doi:10.1016/0165-5728(92)90214-6

    Article  CAS  PubMed  Google Scholar 

  • Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJP, Lackner A, Larsen SA, Lee K, Leonard HL, Markey SP, Martin A, Milstein S, Mouradian MM, Pranzatelli MR, Quearry BJ, Salazar A, Smith M, Strauss SE, Sunderland T, Swedo SW, Tourtellotte WW (1992b) Quinolinic acid and kynurenine pathway metabolism in inflammatory and noninflammatory neurological disease. Brain 115:1249–1273

    Article  PubMed  Google Scholar 

  • Honig A, Rieger L, Kapp M, Sutterlin M, Dietl J, Kammerer U (2004) Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance. J Reprod Immunol 61:79–86. doi:10.1016/j.jri.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  • Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, Mellor AL, Prendergasts GC, Munn DH (2007) Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67:792–801. doi:10.1158/0008-5472.CAN-06-2925

    Article  CAS  PubMed  Google Scholar 

  • Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ (2006) Immunopathogenesis of cerebral malaria. Int J Parasitol 36:569–582. doi:10.1016/j.ijpara.2006.02.016

    Article  CAS  PubMed  Google Scholar 

  • Kehoe JW, Bertozzi CR (2000) Tyrosine sulfation: a modulator of extracellular protein–protein interactions. Chem Biol 7:57–61. doi:10.1016/S1074-5521(00)00093-4

    Article  Google Scholar 

  • Kim YH, Berry AH, Spencer DS, Stites WE (2001) Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Eng 14:343–347. doi:10.1093/protein/14.5.343

    Article  CAS  PubMed  Google Scholar 

  • Knox WE (1966) The regulation of tryptophan pyrrolase activity by tryptophan. Adv Enzyme Regul 4:287–297

    Article  CAS  PubMed  Google Scholar 

  • Kuma F (1981) Properties of methemoglobin reductase and kinetic study of methemoglobin reduction. J Biol Chem 256:5518–5523

    CAS  PubMed  Google Scholar 

  • Kurokawa H, Lee DS, Watanabe M, Sagami I, Mikami B, Raman CS, Shimizu T (2004) A redox-controlled molecular switch revealed by the crystal structure of a bacterial heme PAS sensor. J Biol Chem 279:20186–20193. doi:10.1074/jbc.M314199200

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238

    Article  CAS  PubMed  Google Scholar 

  • Maghzal GJ, Thomas SR, Hunt NH, Stocker R (2008) Cytochrome b5, not superoxide anion radical, is a major reductant of indoleamine 2,3-dioxygenase in human cells. J Biol Chem 283:12014–12025. doi:10.1074/jbc.M710266200

    Article  CAS  PubMed  Google Scholar 

  • Metz R, DuHadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC (2007) Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound d-1-methyl-tryptophan. Cancer Res 67:7082–7087. doi:10.1158/0008-5472.CAN-07-1872

    Article  CAS  PubMed  Google Scholar 

  • Novak N (2006) Targeting dendritic cells in allergen immunotherapy. Immunol Allergy Clin N Am 26:307–319. doi:10.1016/j.iac.2006.02.010

    Article  Google Scholar 

  • Peitsch MC (1995) Protein modeling by e-mail (vol 13, pg 658, 1995). Biotechnology 13:723. doi:10.1038/nbt0895-723

    Article  Google Scholar 

  • Peterson AC, Migawa MT, Martin MM, Hamaker LK, Czerwinski KC, Zhang W, Arend RA, Fisette PL, Ozaki Y, Will JA, Brown RR, Cook JM (1994) Evaluation of functionalized tryptophan derivatives and related compounds as competitive inhibitors of indoleamine 2,3-dioxygenase. Med Chem Res 4:531–544

    Google Scholar 

  • Pfefferkorn ER, Eckel M, Rebhun S (1986) Interferon-gamma suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation of tryptophan. Mol Biochem Parasitol 20:215–224. doi:10.1016/0166-6851(86)90101-5

    Article  CAS  PubMed  Google Scholar 

  • Schenkman JB, Jansson I (2003) The many roles of cytochrome b5. Pharmacol Ther 97:139–152. doi:10.1016/S0163-7258(02)00327-3

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Nomiyama S, Hirata F, Hayaishi O (1978) Indoleamine 2,3-dioxygenase—purification and some properties. J Biol Chem 253:4700–4706

    CAS  PubMed  Google Scholar 

  • Silbernagl S (1988) The renal handling of amino acids and oligopeptides. Physiol Rev 68:911–1007

    CAS  PubMed  Google Scholar 

  • Sono M (1989) The roles of superoxide anion and methylene-blue in the reductive activation of indoleamine 2,3-dioxygenase by ascorbic-acid or by xanthine oxidase-hypoxanthine. J Biol Chem 264:1616–1622

    CAS  PubMed  Google Scholar 

  • Southan MD, Truscott RJW, Jamie JF, Pelosi L, Walker MJ, Maeda H, Iwamoto Y, Tone S (1996) Structural requirements of the competitive binding site of recombinant human indoleamine 2,3-dioxygenase. Med Chem Res 6:343–352

    CAS  Google Scholar 

  • Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41:852–859. doi:10.1515/CCLM.2003.129

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Oda S, Otsuki T, Hino T, Yoshida T, Shiro Y (2006) Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O-2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci USA 103:2611–2616. doi:10.1073/pnas.0508996103

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kawamichi H, Imai K (1998) A myoglobin evolved from indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme. Comp Biochem Physiol B Biochem Mol Biol 121:117–128. doi:10.1016/S0305-0491(98)10086-X

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Tone S, Takikawa O, Kubo T, Kohno I, Minatogawa Y (2001) Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti. Biochem J 355:425–429. doi:10.1042/0264-6021:3550425

    Article  CAS  PubMed  Google Scholar 

  • Takikawa O, Kuroiwa T, Yamazaki F, Kido R (1988) Mechanism of interferon-gamma action—characterization of indoleamine 2,3-dioxygenase in cultured human-cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem 263:2041–2048

    CAS  PubMed  Google Scholar 

  • Tankiewicz A, Pawlak D, Topczewska-Bruns J, Buczko W (2003) Kidney and liver kynurenine pathway enzymes in chronic renal failure. Adv Exp Med Biol 527:409–414

    CAS  PubMed  Google Scholar 

  • Terentis AC, Thomas SR, Takikawa O, Littlejohn TK, Truscott RJW, Armstrong RS, Yeh SR, Stocker R (2002) The heme environment of recombinant human indoleamine 2,3-dioxygenase—structural properties and substrate-ligand interactions. J Biol Chem 277:15788–15794. doi:10.1074/jbc.M200457200

    Article  CAS  PubMed  Google Scholar 

  • Thomas SR, Stocker R (1999) Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 4:199–220. doi:10.1179/135100099101534927

    Article  CAS  PubMed  Google Scholar 

  • Thomas SR, Terentis AC, Cai H, Takikawa O, Levina A, Lay PA, Freewan M, Stocker R (2007) Post-translational regulation of human indoleamine 2,3-dioxygenase activity by nitric oxide. J Biol Chem 282:23778–23787. doi:10.1074/jbc.M700669200

    Article  CAS  PubMed  Google Scholar 

  • Unneberg P, Merelo JJ, Chacon P, Moran F (2001) SOMCD: method for evaluating protein secondary structure from UV circular dichroism spectra. Proteins Struct Funct Genet 42:460–470. doi:10.1002/1097-0134(20010301)42:4<460:AID-PROT50>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising A, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulations: the GROMOS96 manual and user guide. VdF Hochschulverlag ETHZ, Zürich

    Google Scholar 

  • Vottero E, Mitchell DA, Page MJ, MacGillivray RTA, Sadowski IJ, Roberge M, Mauk AG (2006) Cytochrome b5 is a major reductant in vivo of human indoleamine 2,3-dioxygenase expressed in yeast. Febs Lett 580:2265–2268. doi:10.1016/j.febslet.2006.03.034

    Article  CAS  PubMed  Google Scholar 

  • Williams CA, Harry RA, McLeod JD (2007) Apoptotic cells induce dendritic cell-mediated suppression via interferon-gamma-induced IDO. Immunology. doi:10.1111/j.1365-2567.2007.02743.x

  • World Health Organization (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction, 4th edn. Published on behalf of the World Health Organization by Cambridge University Press, Cambridge, UK, 128 p

  • Yuasa HJ, Takubo M, Takahashi A, Hasegawa T, Noma H, Suzuki T (2007) Evolution of vertebrate indoleamine 2,3-dioxygenases. J Mol Evol 65:705–714. doi:10.1007/s00239-007-9049-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council, the National Health and Medical Research Council and the German Research Council (SFB 535, TP A12 to KB). Boniface Mailu is a scholar of the German Academic Exchange Service which is gratefully acknowledged. RS was supported by a NHMRC Senior Principal Research Fellowship, a University of Sydney Professorial Fellowship, and the University of Sydney Medical Foundation. We thank Joanne Jamie and Robert Willows of Macquarie University for use of the MUCAB CD spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Ball.

Additional information

C. J. D. Austin and B. M. Mailu contributed equally to the work in this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 895 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, C.J.D., Mailu, B.M., Maghzal, G.J. et al. Biochemical characteristics and inhibitor selectivity of mouse indoleamine 2,3-dioxygenase-2. Amino Acids 39, 565–578 (2010). https://doi.org/10.1007/s00726-010-0475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0475-9

Keywords

Navigation