Skip to main content

Advertisement

Log in

Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Toxoplasma gondii and Plasmodium falciparum are apicomplexan parasites responsible for serious diseases in humans. Many studies have focused on the post-translational modifications (PTMs) found in the two protists including phosphorylation, acetylation or SUMOylation but only a few of these are concerned with the nuclear and cytosolic-specific glycosylation O-GlcNAcylation. O-GlcNAcylation is a highly dynamic PTM—regulated by the ON and OFF enzymes: O-GlcNAc transferase and O-GlcNAcase—that can compete with phosphorylation but its function remains unclear. In this work, we directly prove the O-GlcNAcylation in T. gondii using antibodies specifically directed against the modification and we strongly suggest its occurrence in P. falciparum. We found that the inducible 70 kDa-Heat Shock Protein is O-GlcNAcylated, or associated with an O-GlcNAc-partner, in T. gondii. Using anti-OGT antibodies we were able to detect the expression of the glycosyltransferase in T. gondii cultured both in human foreskin fibroblast and in Vero cells and report its putative sequence. For the first time the presence of O-GlcNAcylation is unequivocally shown in T. gondii and suspected in P. falciparum. Since the O-GlcNAcylation is implicated in many biological fundamental processes this study opens a new research track in the knowledge of apicomplexans’ life cycle and pathogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews KT, Tran TN, Wheatley NC, Fairlie DP (2009) Targeting histone deacetylase inhibitors for anti-malarial therapy. Curr Top Med Chem 9:292–308

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Robbins PW, Samuelson J (2009) Molecular characterization of nucleocytosolic O-GlcNAc transferases of Giardia lamblia and Cryptosporidium parvum. Glycobiology 19:331–336

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Goulet V, Le Strat Y, Desenclos JC (2009) Toxoplasmosis among pregnant women in France: risk factors and change of prevalence between 1995 and 2003. Rev Epidemiol Sante Publique 57:241–248

    Article  CAS  PubMed  Google Scholar 

  • Braun L, Cannella D, Pinheiro AM, Kieffer S, Belrhali H, Garin J, Hakimi MA (2009) The small ubiquitin-like modifier (SUMO)-conjugating system of Toxoplasma gondii. Int J Parasitol 39:81–90

    Article  CAS  PubMed  Google Scholar 

  • Butkinaree C, Park K, Hart GW (2010) O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 1800:96–106

    CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti D, Da Silva T, Barger J, Paquette S, Patel H, Patterson S, Allen CM (2002) Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J Biol Chem 277:42066–42073

    Article  CAS  PubMed  Google Scholar 

  • Chung DW, Ponts N, Cervantes S, Le Roch KG (2009) Post-translational modifications in Plasmodium: more than you think!. Mol Biochem Parasitol 168:123–134

    Article  PubMed  Google Scholar 

  • Clarke AJ, Hurtado-Guerrero R, Pathak S, Schüttelkopf AW, Borodkin V, Shepherd SM, Ibrahim AF, van Aalten DM (2008) Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J 27:2780–2788

    Article  CAS  PubMed  Google Scholar 

  • Comer FI, Vosseller K, Wells L, Accavitti MA, Hart GW (2001) Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem 293:169–177

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Miao J, Furuya T, Li X, Su XZ, Cui L (2007) PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Fan Q, Cui L, Miao J (2008) Histone lysine methyltransferases and demethylases in Plasmodium falciparum. Int J Parasitol 38:1083–1097

    Article  CAS  PubMed  Google Scholar 

  • Debierre-Grockiego F, Molitor N, Schwarz RT, Lüder CG (2009) Toxoplasma gondii glycosylphosphatidylinositols up-regulate major histocompatibility complex (MHC) molecule expression on primary murine macrophages. Innate Immun 15:25–32

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann-Schuppert A, Bender S, Odenthal-Schnittler M, Bause E, Schwarz RT (1992) Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. Eur J Biochem 205:815–825

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann-Schuppert A, Bause E, Schwarz RT (1993) Studies on O-glycans of Plasmodium-falciparum-infected human erythrocytes. Evidence for O-GlcNAc and O-GlcNAc-transferase in malaria parasites. Eur J Biochem 216:779–788

    Article  CAS  PubMed  Google Scholar 

  • Dorin-Semblat D, Quashie N, Halbert J, Sicard A, Doerig C, Peat E, Ranford-Cartwright L, Doerig C (2007) Functional characterization of both MAP kinases of the human malaria parasite Plasmodium falciparum by reverse genetics. Mol Microbiol 65:1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C, Van Dorsselaer A, Tomavo S (2008) Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii–host cell interactions. Mol Cell Proteomics 7:891–910

    Article  CAS  PubMed  Google Scholar 

  • Frickel EM, Quesada V, Muething L, Gubbels MJ, Spooner E, Ploegh H, Artavanis-Tsakonas K (2007) Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cell Microbiol 9:1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Gerold P, Dieckmann-Schuppert A, Schwarz RT (1994) Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J Biol Chem 269:2597–2606

    CAS  PubMed  Google Scholar 

  • Grimwood BG, Hechemy K, Stevens RW (1979) Toxoplasma gondii: purification of trophozoites propagated in cell culture. Exp Parasitol 48:282–286

    Article  CAS  PubMed  Google Scholar 

  • Guinez C, Losfeld ME, Cacan R, Michalski JC, Lefebvre T (2006) Modulation of HSP70 GlcNAc-directed lectin activity by glucose availability and utilization. Glycobiology 16:22–28

    Article  CAS  PubMed  Google Scholar 

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Hartweck LM, Scott CL, Olszewski NE (2002) Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh have overlapping functions necessary for gamete and seed development. Genetics 161:1279–1291

    CAS  PubMed  Google Scholar 

  • Heaslip AT, Leung JM, Carey KL, Catti F, Warshaw DM, Westwood NJ, Ballif BA, Ward GE (2010) A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity. PLoS Pathog 6:e1000720

    Article  PubMed  Google Scholar 

  • Hoessli DC, Poincelet M, Gupta R, Ilangumaran S, Nasir-ud-Din (2003) Plasmodium falciparum merozoite surface protein 1. Eur J Biochem 270:366–375

  • Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Horrocks P, Newbold CI (2000) Intraerythrocytic polyubiquitin expression in Plasmodium falciparum is subjected to developmental and heat-shock control. Mol Biochem Parasitol 105:115–125

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Suarez J, Fricovsky E, Wang H, Scott BT, Trauger SA, Han W, Hu Y, Oyeleye MO, Dillmann WH (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284:547–555

    Article  CAS  PubMed  Google Scholar 

  • Lazarus BD, Roos MD, Hanover JA (2005) Mutational analysis of the catalytic domain of O-linked N-acetylglucosaminyl transferase. J Biol Chem 280:35537–35544

    Article  CAS  PubMed  Google Scholar 

  • Lazarus BD, Love DC, Hanover JA (2009) O-GlcNAc cycling: implications for neurodegenerative disorders. Int J Biochem Cell Biol 41:2134–2146

    Article  CAS  PubMed  Google Scholar 

  • Luk FC, Johnson TM, Beckers CJ (2008) N-linked glycosylation of proteins in the protozoan parasite Toxoplasma gondii. Mol Biochem Parasitol 157:169–178

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Fleites C, Macauley MS, He Y, Shen DL, Vocadlo DJ, Davies GJ (2008) Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat Struct Mol Biol 15:764–765

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Fleites C, He Y, Davies GJ (2010) Structural analyses of enzymes involved in the O-GlcNAc modification. Biochim Biophys Acta 1800:122–133

    CAS  PubMed  Google Scholar 

  • Nicolle C, Manceaux L (1908) Sur une infection à corps de Leshman (ou organismes voisons) du gondi. CR Acad Sci 147:763

    Google Scholar 

  • Nolte D, Müller U (2002) Human O-GlcNAc transferase (OGT): genomic structure, analysis of splice variants, fine mapping in Xq13.1. Mamm Genome 13:62–64

    Article  CAS  PubMed  Google Scholar 

  • Plessmann U, Reiter-Owona I, Lechtreck KF (2004) Posttranslational modifications of alpha-tubulin of Toxoplasma gondii. Parasitol Res 94:386–389

    Article  PubMed  Google Scholar 

  • Schmidt A, Schwarz RT, Gerold P (1998) Plasmodium falciparum: asexual erythrocytic stages synthesize two structurally distinct free and protein-bound glycosylphosphatidylinositols in a maturation-dependent manner. Exp Parasitol 88:95–102

    Article  CAS  PubMed  Google Scholar 

  • Schneider AG, Mercereau-Puijalon O (2005) A new Apicomplexa-specific protein kinase family: multiple members in Plasmodium falciparum, all with an export signature. BMC Genomics 6:30

    Article  PubMed  Google Scholar 

  • Shafi R, Iyer SP, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA 97:5735–5739

    Article  CAS  PubMed  Google Scholar 

  • Shen A, Kamp HD, Gründling A, Higgins DE (2006) A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev 20:283–295

    Google Scholar 

  • Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104:1143–1156

    Article  CAS  PubMed  Google Scholar 

  • Striepen B, Zinecker CF, Damm JB, Melgers PA, Gerwig GJ, Koolen M, Vliegenthart JF, Dubremetz JF, Schwarz RT (1997) Molecular structure of the “low molecular weight antigen” of Toxoplasma gondii: a glucose alpha 1–4 N-acetylgalactosamine makes free glycosyl-phosphatidylinositols highly immunogenic. J Mol Biol 266:797–813

    Article  CAS  PubMed  Google Scholar 

  • Teo CF, Ingale S, Wolfert MA, Elsayed GA, Nöt LG, Chatham JC, Wells L, Boons GJ (2010) Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat Chem Biol 6:338–343

    Article  CAS  PubMed  Google Scholar 

  • Ward P, Equinet L, Packer J, Doerig C (2004) Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5:79

    Article  PubMed  Google Scholar 

  • Weiss LM, Fiser A, Angeletti RH, Kim K (2009) Toxoplasma gondii proteomics. Expert Rev Proteomics 6:303–313

    Article  CAS  PubMed  Google Scholar 

  • Wichmann D, Schwarz RT, Ruppert V, Ehrhardt S, Cramer JP, Burchard GD, Maisch B, Debierre-Grockiego F (2007) Plasmodium falciparum glycosylphosphatidylinositol induces limited apoptosis in liver and spleen mouse tissue. Apoptosis 12:1037–1041

    Article  PubMed  Google Scholar 

  • Wrabl JO, Grishin NV (2001) Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J Mol Biol 314:365–374

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, El Bissati K, Verdier-Pinard P, Burd B, Zhang H, Kim K, Fiser A, Angeletti RH, Weiss LM (2010) Post-translational modifications to Toxoplasma gondii alpha- and beta-tubulins include novel C-terminal methylation. Proteome Res 9:359–372

    Article  CAS  Google Scholar 

  • Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451:964–969

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the “Université de Lille 1” (Villeneuve d’Ascq, France) and the “Centre National de la Recherche Scientifique” and the “Deutsche Forschungsgemeinschaft” (Bonn, Germany). We are particularly grateful to Professor Gerald W. Hart for the kind gift of AL25, AL35 and CTD110.6. YPC is a recipient of a Rosalind Franklin fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Lefebvre.

Additional information

Y. Perez-Cervera and G. Harichaux equally contribute together; T. Lefebvre and R. T. Schwarz equally contribute together.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Cervera, Y., Harichaux, G., Schmidt, J. et al. Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study. Amino Acids 40, 847–856 (2011). https://doi.org/10.1007/s00726-010-0702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0702-4

Keywords

Navigation