Skip to main content
Log in

Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG) is a potent protein glycating agent. Glycation is directed to guanidino groups of arginine residues forming mainly hydroimidazolone N δ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) residues. MG-H1 formation is damaging to the proteome as modification is often directed to functionally important arginine residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis tandem mass spectrometry and also by immunoblotting with specific monoclonal antibodies. MG-glycated proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation endproduct in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer’s disease, arthritis, Parkinson’s disease and ageing. Glyoxalase 1 and aldo–keto reductase 1B1 metabolise >99% MG to innocuous products and thereby protect the proteome, providing an enzymatic defence against MG-mediated glycation. Proteins susceptible to MG modification with related functional impairment are called the “dicarbonyl proteome” (DCP). DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and other proteins. DCP component proteins are linked to mitochondrial dysfunction in diabetes and ageing, oxidative stress, dyslipidemia, cell detachment and anoikis and apoptosis. Biochemical and physiological susceptibility of a protein to modification by MG and sensitivity of biochemical pathways and physiological systems to related functional impairment under challenge of physiologically relevant increases in MG exposure are key concepts. Improved understanding of the DCP will likely have profound importance for human health, longevity and treatment of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abordo EA, Minhas HS, Thornalley PJ (1999) Accumulation of α-oxoaldehydes during oxidative stress. A role in cytotoxicity. Biochem Pharmacol 58:641–648

    Article  PubMed  CAS  Google Scholar 

  • Agalou S, Ahmed N, Babaei-Jadidi R, Dawnay A, Thornalley PJ (2005) Profound mishandling of protein glycation degradation products in uremia and dialysis. J Am Soc Nephrol 16:1471–1485

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Argirov OK, Minhas HS, Cordeiro CA, Thornalley PJ (2002) Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatisation by aminoquinolyl-N-hydroxysuccimidyl-carbamate and application to Nε-carboxymethyl-lysine- and Nε-(1-carboxyethyl)lysine-modified albumin. Biochem J 364:1–14

    PubMed  CAS  Google Scholar 

  • Ahmed N, Thornalley PJ, Dawczynski J, Franke S, Strobel J, Stein G, Haik JRGM (2003) Methylglyoxal-derived hydroimidazolone advanced glycation endproducts of human lens proteins. Invest Ophthalmol Vis Sci 44:5287–5292

    Article  PubMed  Google Scholar 

  • Ahmed N, Ahmed U, Thornalley PJ, Hager K, Fleischer GA, Munch G (2004a) Protein glycation, oxidation and nitration marker residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J Neurochem 92:255–263

    Article  Google Scholar 

  • Ahmed N, Thornalley PJ, Luthen R, Haussinger D, Sebekova K, Schinzel R, Voelker W, Heidland A (2004b) Processing of protein glycation, oxidation and nitrosation adducts in the liver and the effect of cirrhosis. J Hepatol 41:913–919

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ (2005a) Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 48:1590–1603

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Dobler D, Dean M, Thornalley PJ (2005b) Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem 280:5724–5732

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Mirshekar-Syahkal B, Kennish L, Karachalias N, Babaei-Jadidi R, Thornalley PJ (2005c) Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection. Mol Nutr Food Res 49:691–699

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Ahmed U, Thornalley PJ, Watts R, Tarr J, Haigh R, Winyard P (2006) Profound increase in proteolytic products of glycated and oxidised proteins in synovial fluid and plasma in osteoarthritis and rheumatoid arthritis, corrected by TNF-α antibody therapy in rheumatoid arthritis. Rheumatology 45(Suppl 1):i53

    Google Scholar 

  • Ahmed U, Dobler D, Larkin SJ, Rabbani N, Thornalley PJ (2008) Reversal of hyperglycemia-induced angiogenesis deficit of human endothelial cells by overexpression of glyoxalase 1 in vitro. Maillard reaction. Ann N Y Acad Sci 1126:262–264

    Article  PubMed  CAS  Google Scholar 

  • Baba SP, Barski OA, Ahmed Y, O’Toole TE, Conklin DJ, Bhatnagar A, Srivastava S (2009) Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes 58:2486–2497

    Article  PubMed  CAS  Google Scholar 

  • Bechtold U, Rabbani N, Mullineaux PM, Thornalley PJ (2009) Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. Plant J 59:661–671

    Article  PubMed  CAS  Google Scholar 

  • Beisswenger PJ, Howell S, Touchette A, Lal S, Szwergold BS (1999) Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48:198–202

    Article  PubMed  CAS  Google Scholar 

  • Biemel KM, Friedl DA, Lederer MO (2002) Identification and quantification of major Maillard cross-links in human serum albumin and lens protein—evidence for glucosepane as the dominant compound. J Biol Chem 277:24907–24915

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  PubMed  CAS  Google Scholar 

  • Bookchin RM, Gallop PM (1968) Structure of hemoglobin A1c: nature of the N-terminal β-chain blocking group. Biochem Biophys Res Commun 32:86–93

    Article  PubMed  CAS  Google Scholar 

  • Brouwers O, Niessen P, Haenen G, Miyata T, Brownlee M, Stehouwer C, De Mey J, Schalkwijk C (2010) Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 53:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938

    Article  PubMed  CAS  Google Scholar 

  • Chan WH, Wu HJ, Shiao NH (2007) Apoptotic signaling in methylglyoxal-treated human osteoblasts involves oxidative stress, c-jun N-terminal kinase, caspase-3, and p21-activated kinase 2. J Cell Biochem 100:1056–1069

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ahmed N, Thornalley PJ (2005) Peptide mapping of human hemoglobin modified minimally by methylglyoxal in vitro. Ann N Y Acad Sci 1043:905

    Article  Google Scholar 

  • Delpierre G, Rider MH, Collard F, Stroobant V, Vanstapel F, Santos H, Van Schaftingen E (2000) Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes 49:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Dobler D, Ahmed N, Song LJ, Eboigbodin KE, Thornalley PJ (2006) Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 55:1961–1969

    Article  PubMed  CAS  Google Scholar 

  • Dolhofer R, Wieland OH (1979) Glycosylation of serum-albumin—elevated glycosyl-albumin in diabetic-patients. FEBS Lett 103:282–286

    Article  PubMed  CAS  Google Scholar 

  • Dudek EJ, Shang F, Liu Q, Valverde P, Hobbs M, Taylor A (2005) Selectivity of the ubiquitin pathway for oxidatively modified proteins: relevance to protein precipitation diseases. FASEB J 19:1707–1709

    PubMed  CAS  Google Scholar 

  • Duran-Jimenez B, Dobler D, Moffat S, Rabbani N, Streuli CH, Thornalley PJ, Tomlinson D, Gardiner NJ (2009) Advanced glycation endproducts in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 58:2893–2903

    Article  PubMed  CAS  Google Scholar 

  • Ellis KJ (2000) Human body composition: in vivo methods. Physiol Rev 80:649–680

    PubMed  CAS  Google Scholar 

  • Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC (2000) Structural basis of collagen recognition by integrin alpha 2 beta 1. Cell 101:47–56

    Article  PubMed  CAS  Google Scholar 

  • Franch HA, Sooparb S, Du J (2001) A mechanism regulating proteolysis of specific proteins during renal tubular cell growth. J Biol Chem 276:19126–19131

    Article  PubMed  CAS  Google Scholar 

  • Gallet X, Charloteaux B, Thomas A, Braseur R (2000) A fast method to predict protein interaction sites from sequences. J Mol Biol 302:917–926

    Article  PubMed  CAS  Google Scholar 

  • Gangadhariah MH, Wang BL, Linetsky M, Henning C, Spanneberg R, Glomb MA, Nagaraj RH (2010) Hydroimidazolone modification of human alpha A-crystallin: effect on the chaperone function and protein refolding ability. Biochim Biophy Acta Mol Basis Dis 1802:432–441

    CAS  Google Scholar 

  • Gao Y, Wang YS (2006) Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal. Biochemistry 45:15654–15660

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL, Akopian TN, Kisselev AF, Lee DH (1997) Protein degradation by the proteasome and dissection of its in vivo importance with synthetic inhibitors. Mol Biol Rep 24:69–75

    Article  PubMed  CAS  Google Scholar 

  • Gomes RA, Oliveira LMA, Silva M, Ascenso C, Quintas A, Costa G, Coelho AV, Silva MS, Ferreira AEN, Freire AP, Cordeiro C (2008) Protein glycation in vivo: functional and structural effects on yeast enolase. Biochem J 416:317–326

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk KE, Kessler H (2002) The structures of integrins and integrin–ligand complexes: implications for drug design and signal transduction. Angew Chem Int Ed 41:3767–3774

    Article  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJA (1996) Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 271:15504–15509

    Article  PubMed  CAS  Google Scholar 

  • Henle T, Walter A, Haeßner R, Klostermeryer H (1994) Detection and identification of a protein-bound imidazolone resulting from the reaction of arginine residues and methylglyoxal. Z Lebensm Unters Forsch 199:55–58

    Article  CAS  Google Scholar 

  • Hernebring M, Brolen G, Aguilaniu H, Semb H, Nystrom T (2006) Elimination of damaged proteins during differentiation of embryonic stem cells. PNAS 103:7700–7705

    Article  PubMed  CAS  Google Scholar 

  • Jerzykowski T, Matuszewski W, Tarnawski R, Winter R, Herman ZS, Sokola A (1975) Changes of certain pharmacological and biochemical indices in acute methylglyoxal poisoning. Arch Immunol Ther Exp 23:549–560

    CAS  Google Scholar 

  • Kang Y, Edwards LG, Thornalley PJ (1996) Effect of methylglyoxal on human leukaemia 60 cell growth: modification of DNA, G1 growth arrest and induction of apoptosis. Leuk Res 20:397–405

    Article  PubMed  CAS  Google Scholar 

  • Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley P (2010) Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia 53:1506–1516

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Nakase H, Nagata K, Sakaki T, Maeda M, Yamamoto K (2004) Observation of arterial and venous thrombus formation by scanning and transmission electron microscopy. Acta Neurochir 146:45–51

    Article  CAS  Google Scholar 

  • Knight CG, Morton LF, Peachey AR, Tuckwell DS, Farndale RW, Barnes MJ (2000) The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem 275:35–40

    Article  PubMed  CAS  Google Scholar 

  • Koenig RJ, Blobstein SH, Cerami A (1977) Structure of carbohydrate of hemoglobin A1c. J Biol Chem 252:2992–2997

    PubMed  CAS  Google Scholar 

  • Kumagai T, Nangaku M, Kojima I, Nagai R, Ingelfinger JR, Miyata T, Fujita T, Inagi R (2009) Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am J Physiol Renal Physiol 296:F912–F921

    Article  PubMed  CAS  Google Scholar 

  • Kurz A, Rabbani N, Walter M, Bonin M, Thornalley PJ, Auburger G, Gispert S (2010) Alpha-synuclein deficiency leads to increased glyoxalase I expression and glycation stress. Cell Mol Life Sci (in press)

  • Langer T, Levy RI, Strober W (1972) Metabolism of low-density lipoprotein in familial type-H hyperlipoproteinemia. J Clin Invest 51:1528–1536

    Article  PubMed  CAS  Google Scholar 

  • Lyles GA, Chalmers J (1992) The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amino oxidase in human umbilical artery. Biochem Pharmacol 43:1409–1414

    Article  PubMed  CAS  Google Scholar 

  • Maillard LC (1912) Action des acides amines sur les sucres: formation des melanoidines par voie methodique. Compt Rend Acad Sci 154:66–68

    CAS  Google Scholar 

  • Miyazawa N, Abe M, Souma T, Tanemoto M, Abe T, Nakayama M, Ito S (2010) Methylglyoxal augments intracellular oxidative stress in human aortic endothelial cells. Free Radic Res 44:101–107

    Article  PubMed  CAS  Google Scholar 

  • Morcos M, Du X, Pfisterer F, Hutter H, Sayed AAR, Thornalley P, Ahmed N, Baynes J, Thorpe S, Kukudov G, Schlotterer A, Bozorgmehr F, El Baki RA, Stern D, Moehrlen F, Ibrahim Y, Oikonomou D, Hamann A, Becker C, Zeier M, Schwenger V, Miftari N, Humpert P, Hammes HP, Buechler M, Bierhaus A, Brownlee M, Nawroth PP (2008) Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell 7:260–269

    Article  PubMed  CAS  Google Scholar 

  • Myint T, Hoshi S, Ookawara T, Miyazawa N, Keiichiro M, Suzuki K, Taniguchi N (1995) Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochim Biophys Acta 1272:73–79

    PubMed  Google Scholar 

  • Nicolay JP, Schneider J, Niemoeller OM, Artunc F, Portero-Otin M, Haik G, Thornalley PJ, Schleicher E, Wieder T, Lang F (2006) Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol Biochem 18:223–232

    Article  PubMed  CAS  Google Scholar 

  • Pedchenko VK, Chetyrkin SV, Chuang P, Ham AJ, Saleem MA, Mathieson PW, Hudson BG, Voziyan PA (2005) Mechanism of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes 54:2952–2960

    Article  PubMed  CAS  Google Scholar 

  • Peters T (1996) All about albumin. Academic Press, New York

    Google Scholar 

  • Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212:101–105

    Article  PubMed  CAS  Google Scholar 

  • Phillips SA, Mirrlees D, Thornalley PJ (1993) Modification of the glyoxalase system in streptozotocin-induced diabetic rats: effect of the aldose reductase inhibitor Statil. Biochem Pharmacol 46:805–811

    Article  PubMed  CAS  Google Scholar 

  • Pratt JM, Petty J, Riba-Garcia I, Robertson DHL, Gaskell SJ, Oliver SG, Beynon RJ (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteom 1:579–591

    Article  CAS  Google Scholar 

  • Queisser MA, Yao D, Geisler S, Hammes HP, Lochnit G, Schleicher ED, Brownlee M, Preissner KT (2010a) Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59:670–678

    Article  PubMed  CAS  Google Scholar 

  • Queisser MA, Yao DC, Geisler S, Hammes HP, Lochnit G, Schleicher ED, Brownlee M, Preissner KT (2010b) Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59:670–678

    Article  PubMed  CAS  Google Scholar 

  • Rabbani N, Thornalley PJ (2008a) Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem Soc Trans 036:1045–1050

    Article  CAS  Google Scholar 

  • Rabbani N, Thornalley PJ (2008b) The dicarbonyl proteome: proteins susceptible to dicarbonyl glycation at functional sites in health, aging, and disease. Ann N Y Acad Sci 1126:124–127

    Article  PubMed  CAS  Google Scholar 

  • Rabbani N, Sebekova K, Sebekova K Jr, Heidland A, Thornalley PJ (2007) Protein glycation, oxidation and nitration free adduct accumulation after bilateral nephrectomy and ureteral ligation. Kidney Int 72:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Rabbani N, Chittari MV, Zehnder D, Ceriello A, Thornalley PJ (2009) High dose metformin therapy reduces glycation and oxidative damage to apolipoprotein B100 and may decelerate atherosclerosis in patients with type 2 diabetes. Diabetologia 52:1293

    Google Scholar 

  • Rabbani N, Varma Chittari M, Bodmer CW, Zehnder D, Ceriello A, Thornalley PJ (2010) Increased glycation and oxidative damage to apolipoprotein B100 of LDL in patients with type 2 diabetes and effect of metformin. Diabetes 59:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Reichard GA, Skutches CL, Hoeldtke RD, Owen OE (1986) Acetone metabolism in humans during diabetic ketoacidosis. Diabetes 35:668–674

    Article  PubMed  Google Scholar 

  • Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, Brownlee M, Monnier VM, Weiss MF (2005) Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol 289:F420–F430

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  PubMed  CAS  Google Scholar 

  • Santarius T, Bignell GR, Greenan CD, Widaa S, Chen L, Mahoney CL, Butler A, Edkins S, Waris S, Thornalley PJ, Futreal PA, Stratton MR (2010) GLO1—a novel amplified gene in human cancer. Genes Chromosom Cancer 49:711–725

    Article  PubMed  CAS  Google Scholar 

  • Shinohara M, Thornalley PJ, Giardino I, Beisswenger PJ, Thorpe SR, Onorato J, Brownlee M (1998) Overexpression of glyoxalase I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycaemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142–1147

    Article  PubMed  CAS  Google Scholar 

  • Stevens VJ, Monnier VM, Cerami A (1980) Hemoglobin glycosylation as a model for modification of other proteins. Texas Rep Biol Med 40:387–396

    CAS  Google Scholar 

  • Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115:3729–3738

    Article  PubMed  CAS  Google Scholar 

  • Tajika T, Bando I, Furuta T, Moriya N, Koshino H, Uramoto M (1997) Novel amino acid metabolite produced by Streptomyces sp.: taxonomy, isolation and structural elucidation. Biosci Biotechnol Biochem 61:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Thangarajah H, Yao DC, Chang EI, Shi YB, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC (2009) The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci USA 106:13505–13510

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (1988) Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem J 254:751–755

    PubMed  CAS  Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Aspects Med 14:287–371

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (1998) Glutathione-dependent detoxification of α-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112:137–151

    Article  PubMed  Google Scholar 

  • Thornalley PJ (2003a) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (2003b) The enzymatic defence against glycation in health, disease and therapeutics: a symposium to examine the concept. Biochem Soc Trans 31:1343–1348

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (2005) Dicarbonyl intermediates in the Maillard reaction. Ann N Y Acad Sci 1043:111–117

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (2008) Protein and nucleotide damage by methylglyoxal in physiological systems—role in ageing and disease. Drug Metab Drug Interact 23:125–150

    Article  CAS  Google Scholar 

  • Thornalley PJ, Strath M, Wilson RJM (1994) Anti-malarial activity in vitro of the glyoxalase I inhibitor diester, S-p-bromobenzylglutathione diethyl ester. Biochem Pharmacol 268:14189–14825

    Google Scholar 

  • Thornalley PJ, Edwards LG, Kang Y, Wyatt C, Davies N, Ladan MJ, Double J (1996) Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem Pharmacol 51:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592

    Article  PubMed  CAS  Google Scholar 

  • Tsikas D, Mitschke A, Suchy MT, Gutzki FM, Stichtenoth DO (2005) Determination of 3-nitrotyrosine in human urine at the basal state by gas chromatography-tandem mass spectrometry and evaluation of the excretion after oral intake. J Chromatogr B 827:146–156

    Article  CAS  Google Scholar 

  • Vander Jagt DL, Robinson B, Taylor KK, Hunsaker LA (1992) Reduction of trioses by NADPH-dependent aldo–keto reductases (aldose reductase, methylglyoxal, and diabetic complications). J Biol Chem 267:4364–4369

    PubMed  CAS  Google Scholar 

  • Venkatraman J, Aggarwal K, Balaram P (2001) Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement. Chem Biol 8:611–625

    Article  PubMed  CAS  Google Scholar 

  • Wendler A, Irsch T, Rabbani N, Thornalley PJ, Krauth-Siegel RL (2009) Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes. Mol Biochem Parasitol 163:19–27

    Article  PubMed  CAS  Google Scholar 

  • Xiong JP, Stehle T, Zhang RG, Joachimiak A, Frech M, Goodman SL, Aranout MA (2002) Crystal structure of the extracellular segment of integrin alpha V beta 3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155

    Article  PubMed  CAS  Google Scholar 

  • Yao D, Brownlee M (2009) Hyperglycemia-induced reactive oxygen species increase expression of RAGE and RAGE ligands. Diabetes 59:249–255

    Article  PubMed  Google Scholar 

  • Yao DC, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255

    Article  PubMed  CAS  Google Scholar 

  • Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Rabbani N, Thornalley PJ, Sarthy VP, Hammes HP, Brownlee M (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Wellcome Trust and British Heart Foundation for support for our glycation research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Thornalley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabbani, N., Thornalley, P.J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42, 1133–1142 (2012). https://doi.org/10.1007/s00726-010-0783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0783-0

Keywords

Navigation