Skip to main content

Advertisement

Log in

AW00179 potentiates TRAIL-mediated death of human lung cancer H1299 cells through ROS-JNK-c-Jun-mediated up-regulation of DR5 and down-regulation of anti-apoptotic molecules

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells, but when used alone, it is not effective at treating TRAIL-resistant tumors. This resistance is challenging for TRAIL-based anti-cancer therapies. In this study, we found that 1-(4-trifluoromethoxy-phenyl)-3-[4-(5-trifluoromethyl-2,5-dihydro-pyrazol-1-yl)-phenyl]-urea (AW00179) sensitized human lung cancer H1299 cells to TRAIL-mediated apoptosis. Even in the absence of TRAIL, AW00179 strongly induced DR5 expression and decreased the expression of anti-apoptotic proteins, suggesting that the sensitizing effect of AW00179 on TRAIL-mediated apoptosis is due to increased levels of DR5 protein and decreased anti-apoptotic molecules. AW00179 also induced the activation of c-Jun and ERK; however, a pharmacologic inhibition study revealed that JNK-c-Jun signaling is involved in the induction of DR5 expression. In addition, reactive oxygen species (ROS) appear to be involved in AW00179 activity. In conclusion, AW00179 has the potential to sensitize H1299 cells to TRAIL-mediated apoptosis through two distinct mechanisms: ROS-JNK-c-Jun-mediated up-regulation of DR5, and down-regulation of anti-apoptotic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulghani J, El-Deiry WS (2010) TRAIL receptor signaling and therapeutics. Expert Opin Ther Targets 14(10):1091–1108

    Article  PubMed  CAS  Google Scholar 

  • Amm HM, Oliver PG, Lee CH, Li Y, Buchsbaum DJ (2011) Combined modality therapy with TRAIL or agonistic death receptor antibodies. Cancer Biol Ther 11(5):431–449

    Article  PubMed  CAS  Google Scholar 

  • Braeuer SJ, Büneker C, Mohr A, Zwacka RM (2006) Constitutively activated nuclear factor-kappaB, but not induced NF-kappaB, leads to TRAIL resistance by up-regulation of X-linked inhibitor of apoptosis protein in human cancer cells. Mol Cancer Res 4(10):715–728

    Article  PubMed  CAS  Google Scholar 

  • Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC (2004) Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 11(8):915–923

    Article  PubMed  CAS  Google Scholar 

  • Chen JJ, Chou CW, Chang YF, Chen CC (2008) Proteasome inhibitors enhance TRAIL-induced apoptosis through the intronic regulation of DR5: involvement of NF-κB and reactive oxygen species-mediated p53 activation. J Immunol 180(12):8030–8039

    PubMed  CAS  Google Scholar 

  • Chen KF, Tai WT, Liu TH, Huang HP, Lin YC, Shiau CW, Li PK, Chen PJ, Cheng AL (2010) Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res 16(21):5189–5199

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt1):1–16

    PubMed  CAS  Google Scholar 

  • Frese S, Pirnia F, Miescher D, Krajewski S, Borner MM, Reed JC, Schmid RA (2003) PG490-mediated sensitization of lung cancer cells to Apo2L/TRAIL-induced apoptosis requires activation of ERK2. Oncogene 22(35):5427–5435

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Lin YD, Elrod HA, Yue P, Oh Y, Li B, Tao H, Chen GZ, Shin DM, Khuri FR, Sun SY (2010) c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL. Mol Cancer 9:315

    Article  PubMed  CAS  Google Scholar 

  • Gupta SC, Reuter S, Phromnoi K, Park B, Hema PS, Nair M, Aggarwal BB (2011) Nimbolide sensitizes human colon cancer cells to TRAIL through reactive oxygen species- and ERK-dependent up-regulation of death receptors, p53, and Bax. J Biol Chem 286(2):1134–1146

    Article  PubMed  CAS  Google Scholar 

  • Hetschko H, Voss V, Horn S, Seifert V, Prehn JH, Kögel D (2008) Pharmacological inhibition of Bcl-2 family members reactivates TRAIL-induced apoptosis in malignant glioma. J Neurooncol 86(3):265–272

    Article  PubMed  CAS  Google Scholar 

  • Hwang MK, Min YK, Kim SH (2009) Calmodulin inhibition contributes to sensitize TRAIL-induced apoptosis in human lung cancer H1299 cells. Biochem Cell Biol 87(6):919–926

    Article  PubMed  CAS  Google Scholar 

  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schröter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388(6638):190–195

    Article  PubMed  CAS  Google Scholar 

  • Kannappan R, Ravindran J, Prasad S, Sung B, Yadav VR, Reuter S, Chaturvedi MM, Aggarwal BB (2010) Gamma-tocotrienol promotes TRAIL-induced apoptosis through reactive oxygen species/extracellular signal-regulated kinase/p53-mediated upregulation of death receptors. Mol Cancer Ther 9(8):2196–2207

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Fisher MJ, Xu SQ, El Deiry WS (2000) Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 6(2):335–346

    PubMed  CAS  Google Scholar 

  • Kim K, Nakagawa H, Fei P, Rustgi AK, El-Deiry WS (2004) Targeting Bcl-xL in esophageal squamous cancer to sensitize to chemotherapy plus TRAIL-induced apoptosis while normal epithelial cells are protected by blockade of caspase 9. Cell Death Differ 11(5):583–587

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Lee DH, Jeong JH, Guo ZS, Lee YJ (2008a) Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem Pharmacol 75(10):1946–1958

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lee TJ, Leem J, Choi KS, Park JW, Kwon TK (2008b) Sanguinarine-induced apoptosis: generation of ROS, down-regulation of Bcl-2, c-FLIP, and synergy with TRAIL. J Cell Biochem 104(3):895–907

    Article  PubMed  CAS  Google Scholar 

  • Krueger A, Baumann S, Krammer PH, Kirchhoff S (2001) FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 21(24):8247–8254

    Article  PubMed  CAS  Google Scholar 

  • Lamothe B, Aggarwal BB (2002) Ectopic expression of Bcl-2 and Bcl-xL inhibits apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL) through suppression of caspases-8, 7, and 3 and BID cleavage in human acute myelogenous leukemia cell line HL-60. J Interferon Cytokine Res 22(2):269–279

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10(1):66–75

    Article  PubMed  CAS  Google Scholar 

  • Lee TJ, Lee JT, Park JW, Kwon TK (2006) Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochem Biophys Res Commun 351(4):1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Liu X, Yue P, Benbrook DM, Berlin KD, Khuri FR, Sun SY (2008) Involvement of c-FLIP and survivin down-regulation in flexible heteroarotinoid-induced apoptosis and enhancement of TRAIL-initiated apoptosis in lung cancer cells. Mol Cancer Ther 7(11):3556–3565

    Article  PubMed  CAS  Google Scholar 

  • McGrath EE (2011) The tumor necrosis factor-related apoptosis-inducing ligand and lung cancer: still following the right TRAIL? J Thorac Oncol 6(6):983–987

    Article  PubMed  Google Scholar 

  • Moon DO, Kim MO, Choi YH, Kim GY (2010) Butein sensitizes human hepatoma cells to TRAIL-induced apoptosis via extracellular signal-regulated kinase/Sp1-dependent DR5 upregulation and NF-κB inactivation. Mol Cancer Ther 9(6):1583–1595

    Article  PubMed  CAS  Google Scholar 

  • Nakshatri H, Rice SE, Bhat-Nakshatri P (2004) Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene 23(44):7330–7344

    Article  PubMed  CAS  Google Scholar 

  • Ng CP, Bonavida B (2002) X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol Cancer Ther 1(12):1051–1058

    PubMed  CAS  Google Scholar 

  • Ng CP, Zisman A, Bonavida B (2002) Synergy is achieved by complementation with Apo2L/TRAIL and actinomycin D in Apo2L/TRAIL-mediated apoptosis of prostate cancer cells: role of XIAP in resistance. Prostate 53(4):286–299

    Article  PubMed  CAS  Google Scholar 

  • Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113

    Article  PubMed  CAS  Google Scholar 

  • Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F (1805) de Jong S (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 2:123–140

    Google Scholar 

  • Prasad S, Yadav VR, Kannappan R, Aggarwal BB (2011a) Ursolic acid, a pentacyclin triterpene, potentiates TRAIL-induced apoptosis through p53-independent up-regulation of death receptors: evidence for the role of reactive oxygen species and JNK. J Biol Chem 286(7):5546–5557

    Article  PubMed  CAS  Google Scholar 

  • Prasad S, Yadav VR, Ravindran J, Aggarwal BB (2011b) ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through induction of death receptors and downregulation of cell survival proteins. Cancer Res 71(2):538–549

    Article  PubMed  CAS  Google Scholar 

  • Roth W, Isenmann S, Naumann U, Kügler S, Bähr M, Dichgans J, Ashkenazi A, Weller M (1999) Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun 265(2):479–483

    Article  PubMed  CAS  Google Scholar 

  • Schimmer AD (2004) Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64(20):7183–7190

    Article  PubMed  CAS  Google Scholar 

  • Shenoy K, Wu Y, Pervaiz S (2009) LY303511 enhances TRAIL sensitivity of SHEP-1 neuroblastoma cells via hydrogen peroxide-mediated mitogen-activated protein kinase activation and up-regulation of death receptors. Cancer Res 69(5):1941–1950

    Article  PubMed  CAS  Google Scholar 

  • Sung B, Ravindran J, Prasad S, Pandey MK, Aggarwal BB (2010) Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J Biol Chem 285(46):35418–35427

    Article  PubMed  CAS  Google Scholar 

  • Voelkel-Johnson C (2011) TRAIL-mediated signaling in prostate, bladder and renal cancer. Nat Rev Urol 8(8):417–427

    Article  PubMed  CAS  Google Scholar 

  • Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16(17):5386–5397

    Article  PubMed  CAS  Google Scholar 

  • Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163

    Article  PubMed  CAS  Google Scholar 

  • Wang S (2010) TRAIL: a sword for killing tumors. Curr Med Chem 17(29):3309–3317

    Article  PubMed  CAS  Google Scholar 

  • Wissink EH, Verbrugge I, Vink SR, Schader MB, Schaefer U, Walczak H, Borst J, Verheij M (2006) TRAIL enhances efficacy of radiotherapy in a p53 mutant, Bcl-2 overexpressing lymphoid malignancy. Radiother Oncol 80(2):214–222

    Article  PubMed  CAS  Google Scholar 

  • Xie ZH, Quan MF, Cao JG, Zhang JS (2011) 5-allyl-7-gen-difluoromethoxychrysin enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells. BMC Cancer 11:322

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Wilson NS, Ashkenazi A (2010) Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Curr Opin Cell Biol 22(6):837–844

    Article  PubMed  CAS  Google Scholar 

  • Yang ES, Woo SM, Choi KS, Kwon TK (2011) Acrolein sensitizes human renal cancer Caki cells to TRAIL-induced apoptosis via ROS-mediated up-regulation of death receptor-5 (DR5) and down-regulation of Bcl-2. Exp Cell Res 317(18):2592–2601

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12(3):228–237

    Article  PubMed  CAS  Google Scholar 

  • Zou W, Yue P, Khuri FR, Sun SY (2008) Coupling of endoplasmic reticulum stress to CDDO-Me-induced up-regulation of death receptor 5 via a CHOP-dependent mechanism involving JNK activation. Cancer Res 68(18):7484–7492

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation (NRF) grant (for ‘Chemcial Genomics Research’) funded by the National R&D Program of the Korean Ministry of Education, Science, and Technology (MEST), No. 20100002073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, MK., Ryu, B.J. & Kim, S.H. AW00179 potentiates TRAIL-mediated death of human lung cancer H1299 cells through ROS-JNK-c-Jun-mediated up-regulation of DR5 and down-regulation of anti-apoptotic molecules. Amino Acids 43, 1679–1687 (2012). https://doi.org/10.1007/s00726-012-1249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1249-3

Keywords

Navigation