Skip to main content
Log in

Involvement of histone hypoacetylation in Ni2+-induced bcl-2 down-regulation and human hepatoma cell apoptosis

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Although induction of cell apoptosis is known to be involved in the cytotoxicity of Ni2+, little research has been aimed at the mechanism of Ni2+-induced apoptosis. Recent studies showed that Ni2+ induces histone hypoacetylation in different cell lines. Since histone hypoacetylation plays important roles in the control of cell cycle progress and apoptosis, we hypothesized that histone hypoacetylation may be an unrevealed pathway in Ni2+-induced apoptosis. To address this, effects of Ni2+ on cell apoptosis, bcl-2 gene expression and histone acetylation were examined in human hepatoma Hep3B cells. We found that Ni2+ treatment resulted in cell proliferation arrest, the appearance of detached cells, condensed chromatin, apoptotic bodies and specific DNA fragmentation, indicating the occurrence of cell apoptosis. At the same time, Ni2+ induced a significant decrease in bcl-2 expression and histone acetylation; the decrease of histone H4 acetylation in nucleosomes associated with the bcl-2 promoter region was also proven by a chromatin immunoprecipitation assay, indicating the involvement of histone hypoacetylation in Ni2+-induced bcl-2 down-regulation. Further studies showed that increasing histone acetylation by either 100 nM of trichostatin A or over-expressing histone acetyltranferase p300 in Hep3B cells obviously attenuated the bcl-2 down-regulation and cell apoptosis caused by Ni2+. Considering the importance of bcl-2 in determining cell survival and apoptosis, the data presented here suggest that histone hypoacetylation may represent one unrevealed pathway in Ni2+-induced cell apoptosis, where bcl-2 is one of its targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–H
Fig. 3A, B
Fig. 4A–C
Fig. 5A–F
Fig. 6A–F

Similar content being viewed by others

Abbreviations

AB:

apoptotic body

ChIP:

chromatin immunoprecipitation

DAPI:

4’,6-diamidino-2-phenylindole

HAT:

histone acetyltransferase

HDAC:

histone deacetylase

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

ROS:

reactive oxygen species

RT-PCR:

reverse transcription polymerase chain reaction

TSA:

trichostatin A

References

  1. Anderson A (1992) In: Nieboer E, Nriagu JO (eds) Nickel and human health: current perspectives. Wiley, New York, pp 621–627

  2. Easton DF, Peto J, Morgan LG, Metcalfe LP, Usher V, Doll R (1992) In: Nieboer E, Nriagu JO (eds) Nickel and human health: current perspectives. Wiley, New York, pp 603–619

  3. Zhicheng S (1994) Sci Total Environ 148:293–298

    Article  PubMed  Google Scholar 

  4. Roberts RS, Julian JA, Jadon N, Muir DCF (1992) In: Nieboer E, Nriagu JO (eds) Nickel and human health: current perspectives. Wiley, New York, pp 629–648

  5. Sunderman FW, Kincaid JF (1954) J Am Med Assoc 155:889–894

    CAS  PubMed  Google Scholar 

  6. Shi Z (1986) Br J Ind Med 43:422–424

    CAS  PubMed  Google Scholar 

  7. Nielson FH (1987) In: Mertz W (ed) Trace elements in human and animal nutrition, 5th edn, vol 1. Academic Press, San Diego, pp 245–273

  8. Sunderman FW Jr, Oskarsson A (1991) In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 1101–1126

  9. Savill J (2000) Kidney Blood Press Res 23:173–174

    CAS  PubMed  Google Scholar 

  10. Kim K, Lee SH, Seo YR, Perkins SN, Kasprzak KS (2002) Toxicol Appl Pharmacol 185:41–47

    Article  CAS  PubMed  Google Scholar 

  11. Shiao YH, Lee SH, Kasprzak KS (1998) Carcinogenesis 19:1203–1207

    Article  CAS  PubMed  Google Scholar 

  12. Lee SH, Kim DK, Seo YR, Woo KM, Kim CS, Cho MH (1998) Exp Mol Med 30:171–176

    CAS  PubMed  Google Scholar 

  13. Lee SH, Choi JG, Cho MH (2001) J Korean Med Sci 16:165–168

    CAS  PubMed  Google Scholar 

  14. Dieter MP, Jameson CW, Tucker AN, Luster MI, French JE, Hong HL, Boorman GA (1998) J Toxicol Environ Health 24:357–372

    Google Scholar 

  15. Haley PJ, Shopp GM, Benson JM, Cheng YS, Bice DE, Luster MI, Dunnick JK, Hobbs CH (1990) Fundam Appl Toxicol 15:476–487

    CAS  PubMed  Google Scholar 

  16. Kasprzak KS, Kiser RF, Weislow OS (1988) Magnesium 7:166–172

    CAS  PubMed  Google Scholar 

  17. Smialowicz RJ, Rogers RR, Riddle MM, Stott GA (1984) Environ Res 33:413–427

    CAS  PubMed  Google Scholar 

  18. Dally H, Hartwig A (1997) Carcinogenesis 18:1021–1026

    Article  CAS  PubMed  Google Scholar 

  19. Lynn S, Yew FH, Chen KS, Jan KY (1997) Environ Mol Mutagen 29:208–216

    Article  CAS  PubMed  Google Scholar 

  20. Kang J, Zhang Y, Chen J, Chen H, Lin C, Wang Q, Ou Y (2003) Toxicol Sci 74:279–286

    Article  CAS  PubMed  Google Scholar 

  21. Clarke AS, Lowell JE, Jacobson SJ, Pillus L (1999) Mol Cell Biol 19:2515–2526

    CAS  PubMed  Google Scholar 

  22. Galvez AF, Chen N, Macasieb J, Lumen BOD (2001) Cancer Res 61:7473–7478

    CAS  PubMed  Google Scholar 

  23. Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L (2001) Gene Dev 15:3144–3154

    Article  CAS  PubMed  Google Scholar 

  24. Kawamura T, Hasegawa K, Morimoto T, Iwai-Kanai E, Miyamoto S, Kawase Y, Ono K, Wada H, Akao M, Kita T (2004) Biochem Biophys Res Commun 315:733 –738

    Article  CAS  PubMed  Google Scholar 

  25. Fry CJ, Peterson CL (2002) Science 295:1847–1848

    Article  CAS  PubMed  Google Scholar 

  26. Klochendler-Yeivin A, Yaniv M (2001) Biochim Biophys Acta 1551:M1–M10

    Article  CAS  PubMed  Google Scholar 

  27. Adams JM, Cory S (1998) Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  28. Pepper C, Hoy T, Bentley DP (1997) Br J Cancer 76:935–938

    CAS  PubMed  Google Scholar 

  29. Ho YS, Liu HL, Duh JS, Chen RJ, Ho WL, Jeng JH, Wang YJ, Lin JK (1999) Mol Carcinogen 26:201–211

    Article  CAS  Google Scholar 

  30. Russell WC, Newman C, Williamson DH (1975) Nature 253:461–462

    CAS  PubMed  Google Scholar 

  31. Kang J, Wei Y, Zheng Y (2001) Acta Pharmacol Sin 22:785–792

    CAS  PubMed  Google Scholar 

  32. Cousens LS, Gallwitz D, Alberts BM (1979) J Biol Chem 254:1716–1723

    CAS  PubMed  Google Scholar 

  33. Kerr JFR, Wyllie AH, Currie AR (1992) Br J Cancer 26:239–257

    Google Scholar 

  34. Archer SY, Hodin RA (1999) Curr Opin Genet Dev 9:171–174

    Article  CAS  PubMed  Google Scholar 

  35. Cheung WL, Briggs SD, Allis CD (2000) Curr Opin Cell Biol 12:326–333

    Article  CAS  PubMed  Google Scholar 

  36. Marks PA, Richon VM, Rifkind RA (2000) J Natl Cancer Inst 92:1210–1216

    Article  CAS  PubMed  Google Scholar 

  37. Gray SG, Ekstrom TJ (1998) Biochem Biophys Res Commun 245:423–427

    Article  CAS  PubMed  Google Scholar 

  38. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM (1996) Proc Natl Acad Sci USA 93:12969–12973

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Huang CY, Zheng RL, Cui KR, Li JF (2000) Cell Biol Int 24:9–23

    Article  CAS  PubMed  Google Scholar 

  40. Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) J Pathol 142:67–77

    CAS  PubMed  Google Scholar 

  41. Wyllie AH (1980) Nature 284:555–556

    CAS  PubMed  Google Scholar 

  42. Bursch W, Oberhamma F, Schulte-Hermann R (1992) Trends Pharmacol Sci 13:245–251

    Article  CAS  PubMed  Google Scholar 

  43. Telford WG, King LE, Praker PJ (1994) J Immunol Methods 172:1–16

    Article  CAS  PubMed  Google Scholar 

  44. Chen H, Lin RJ, Xie W, Wilpiz D, Evans RM (1999) Cell 98:675–686

    Article  CAS  PubMed  Google Scholar 

  45. Parekh BS, Maniatis T (1999) Mol Cell 3:125–129

    Article  CAS  PubMed  Google Scholar 

  46. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Hum Mol Genet 10:687–692

    Article  CAS  PubMed  Google Scholar 

  47. Kuo MH, Allis CD (1999) Methods 19:425–433

    Article  CAS  PubMed  Google Scholar 

  48. Chen F, Shi X (2002) Crit Rev Oncol Hematol 42:105–121

    Article  PubMed  Google Scholar 

  49. Huang Y, Davidson G, Li J, Yan Y, Chen F, Costa M, Chen LC, Huang C (2002) Environ Health Perspect (Suppl 5) 110:835–839

    Google Scholar 

  50. Woods JS, Dieguez-Acuna FJ, Ellis ME, Kushleika J, Simmonds PL (2002) Environ Health Perspect (Suppl 5) 110:819–822

    Google Scholar 

  51. Gray SG, Yakovleva T, Hartmann W, Tally M, Bakalkin G, Ekstrom TJ (1999) Exp Cell Res 253:618–628

    Article  CAS  PubMed  Google Scholar 

  52. Hu JF, Oruganti H, Vu TH, Hoffman AR (1998) Biochem Biophys Res Commun 251:403–408

    Article  CAS  PubMed  Google Scholar 

  53. Denkhaus E, Salnikow K (2002) Crit Rev Oncol Hematol 42:35–56

    Article  CAS  PubMed  Google Scholar 

  54. Kargacin B, Klein CB, Costa M (1993) Mutat Res 300:63–72

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Q, Salnikow K, Kluz T, Chen LC, Su WC, Costa M (2003) Toxicol Appl Pharmacol 192:201–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuhong Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Zhang, D., Chen, J. et al. Involvement of histone hypoacetylation in Ni2+-induced bcl-2 down-regulation and human hepatoma cell apoptosis. J Biol Inorg Chem 9, 713–723 (2004). https://doi.org/10.1007/s00775-004-0561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0561-0

Keywords

Navigation