Skip to main content

Advertisement

Log in

The basis of the immunomodulatory activity of malaria pigment (hemozoin)

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The most common and deadly form of the malaria parasite, Plasmodium falciparum, is responsible for 1.5–2.7 million deaths and 300–500 million acute illnesses annually [Bremen in J. Trop. Med. Hyg. 64:1–11 (2001); World Health Organization (2002)]. Hemozoin, the biomineral formed to detoxify the free heme produced during parasitic hemoglobin catabolism, has long been suspected of contributing to the pathological immunodeficiencies that occur during malarial infection. While there is a growing consensus in the literature that native hemozoin maintains immunosuppressive activity, there is considerable controversy over the reactivity of the synthetic form, β-hematin (BH). Given the emerging importance of hemozoin in modulating a host immune response to malarial infection, a careful examination of the effects of the constitutive components of the malaria pigment on macrophage response has been made in order to clarify the understanding of this process. Herein, we present evidence that BH alone is unable to inhibit stimulation of NADPH oxidase and inducible nitric oxide synthase, the key enzymes involved in oxidative burst, and is sensitive to the microbicidal agents of these enzymes both in vitro and in vivo. Further, by systematically examining each of the malaria pigment’s components, we were able to dissect their impact on the immune reactivity of a macrophage model cell line. Reactions between BH and red blood cell (RBC) ghosts effectively reconstituted the observed immunomodulatory reactivity of native hemozoin. Together, these results suggest that the interaction between hemozoin and the RBC lipids results in the generation of toxic products and that these products are responsible for disrupting macrophage function in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BH:

β-Hematin

DCF-DA:

Dichlorofluorescein diacetate

DeaNO:

Diethylamine/nitric oxide sodium complex

DMSO:

Dimethyl sulfoxide

Fe(III)PPIX:

Ferric protoporphyrin IX

FTIR:

Fourier transform IR

15-HETE:

15-S-Hydroxyeicosatetraenioc acid

Hepes:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

HNE:

4-Hydroxy-2-nonenal

iNOS:

Inducible nitric oxide synthase

LPS:

Lippopolysaccharide

NED:

N-(1-Naphthyl)ethylenediamine

PBS:

Phosphate-buffered saline

Pipes:

Piperazine-1,4-bis(2-ethanesulfonic acid)

PMA:

Phorbol-12-myristate-13-acetate

RBC:

Red blood cell

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

References

  1. Bremen J (2001) Am J Trop Med Hyg 64:1–11

    Google Scholar 

  2. World Health Organization (2002)

  3. Sherman IW (1998) ASM Press, Washington

  4. Greenwood B, Mutabingwa T (2002) Nature 415:670–672

    Article  PubMed  CAS  Google Scholar 

  5. Goldberg DE (1993) Semin Cell Biol 4:355–358

    Article  PubMed  CAS  Google Scholar 

  6. Goldberg DE, Slater AFG, Cerami A, Henderson GB (1990) Proc Natl Acad Sci USA 87:2931–2935

    Article  PubMed  CAS  Google Scholar 

  7. Francis SE, Sullivan DJ Jr, Goldberg DE (1997) Annu Rev Microbiol 51:97–123

    Article  PubMed  CAS  Google Scholar 

  8. Green MD, Xiao L, Lal AA (1996) Mol Biochem Parasitol 83:183–188

    Article  PubMed  CAS  Google Scholar 

  9. Oliveira MR, Timm BL, Machado EA, Kildare M, Attias M, Silva JR, Dansa-Petretski M, de Oliveira MA, De Souza W, Pinhal NM, Sousa JJF, Vugman NV, Oliveira PL (2002) FEBS Lett 512:139–144

    Article  PubMed  CAS  Google Scholar 

  10. Atamna H, Ginsberg H (1993) Mol Biochem Parasitol 61:231–241

    Article  PubMed  CAS  Google Scholar 

  11. Orjih AU, Banyal HS, Chevli R, Fitch CD (1981) Science 214:667–669

    Article  PubMed  CAS  Google Scholar 

  12. Carney CK, Harry RS, Sewell S, Wright DW (2006) In: Naka K (ed) Biomineralization. Springer, Berlin Heidelberg New York

    Google Scholar 

  13. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) Nature 404:307–310

    Article  PubMed  CAS  Google Scholar 

  14. Hurst JK, Lymar SV (1999) Acc Chem Res 32:520–528

    Article  CAS  Google Scholar 

  15. Schwarzer E, Bellomo G, Giribaldi G, Ulliers D, Arese P (2001) Parasitology 123:125–131

    Article  PubMed  CAS  Google Scholar 

  16. Schwarzer E, Turrini F, Ulliers D, Giribaldi G, Ginsberg H, Arese P (1992) J Exp Med 176:1033–1041

    Article  PubMed  CAS  Google Scholar 

  17. Schwarzer E, Arese P (1996) Biochim Biophys Acta 1316:169–175

    PubMed  Google Scholar 

  18. Reiner NE (1994) Immunol Today 15:374–381

    Article  PubMed  CAS  Google Scholar 

  19. Fiori PL, Rappelli P, Mirkarimi SN, Ginsburg H, Capuccinelli P, Turrini F (1993) Parasite Immunol 15:647–655

    Article  PubMed  CAS  Google Scholar 

  20. Schwarzer E, Alessio M, Ulliers D, Arese P (1998) Infect Immun 66:1601–1606

    PubMed  CAS  Google Scholar 

  21. Schwarzer E, Muller O, Arese P, Siems WG, Grune T (1996) FEBS Lett 388:119–122

    Article  PubMed  CAS  Google Scholar 

  22. Schwarzer E, Ludwig P, Valente E, Arese P (1999) Parassitologoa 41:199–202

    CAS  Google Scholar 

  23. Schwarzer E, Kuhn H, Valente E, Arese P (2003) Blood 101:722–728

    Article  PubMed  CAS  Google Scholar 

  24. Miller CM, Carney CK, Schrimpe AC, Wright DW (2005) Inorg Chem 44:2134–2136

    Article  PubMed  CAS  Google Scholar 

  25. Pichyangkul S, Saengkrai P, Webster H (1994) Am J Trop Med Hyg 51:430–435

    PubMed  CAS  Google Scholar 

  26. Prada J, Malinowsky J, Muller S, Bienzle U, Kremsner P (1995) Eur Cytokine Netw 6:109–112

    PubMed  CAS  Google Scholar 

  27. Sherry BA, Alava G, Tracey KJ, Martiney J, Cerami A, Slater AFG (1995) J Inflamm 45:85–96

    PubMed  CAS  Google Scholar 

  28. Taramelli D, Basilico N, Pagani E, Grande R, Monti D, Ghionew M, Olliaro P (1995) Exp Parasitol 81:501–511

    Article  PubMed  CAS  Google Scholar 

  29. Taramelli D, Basilico N, De Palma AM, Sarasella M, Ferrante P (1998) Trans R Soc Trop Med Hyg 92:57–62

    Article  PubMed  CAS  Google Scholar 

  30. Taramelli D, Recalcati S, Basilico N, Olliaro P, Cairo G (2000) Lab Invest 80:1781–1788

    Article  PubMed  CAS  Google Scholar 

  31. Biswas S, Karmarkar MG, Sharma YD (2001) Microbiol Lett 194:175–179

    Article  CAS  Google Scholar 

  32. Jaramillo M, Gowda DC, Radzioch D, Olivier M (2003) J Immunol 171:4243–4253

    PubMed  CAS  Google Scholar 

  33. Bohle DS, Helms JB (1993) Biochem Biophys Res Commun 193:504–508

    Article  PubMed  CAS  Google Scholar 

  34. Slater AFG, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, Cerami A, Henderson GB (1991) Proc Natl Acad Sci USA 88:325–329

    Article  PubMed  CAS  Google Scholar 

  35. Blauer G, Akkawi M (1997) J Inorg Biochem 66:145–152

    Article  PubMed  CAS  Google Scholar 

  36. Basilico N, Pagani E, Monti D, Olliaro P, Taramelli D (1998) J Antimicrob Chemother 42:55

    Article  PubMed  CAS  Google Scholar 

  37. Noland GS, Briones N, Sullivan DJ Jr (2003) Mol Biochem Parasitol 130:91

    Article  PubMed  CAS  Google Scholar 

  38. Nagano T (1999) Lumin 14:283–290

    Article  CAS  Google Scholar 

  39. Huckaba CE, Keys FG (1948) J Am Chem Soc 70:1640–1644

    Article  CAS  PubMed  Google Scholar 

  40. Ditz H, Rudolf M (1930) Z Anal Chem 79:333–345

    Article  CAS  Google Scholar 

  41. Derham BK, Ellory JC, Bron AJ, Harding JJ (2003) Eur J Biochem 270:2605–2611

    Article  PubMed  CAS  Google Scholar 

  42. Steck TL, Kant JA (1974) Methods Enzymol 31

  43. Babior BM (1999) Blood 93:1464–1476

    PubMed  CAS  Google Scholar 

  44. Vignais PV (2002) Cell Mol Life Sci 59:1428–1459

    Article  PubMed  CAS  Google Scholar 

  45. DeLeo FR, Quinn MT (1996) J Leukoc Biol 60:677–691

    PubMed  Google Scholar 

  46. Jaramillo M, Godbout M, Olivier M (2005) J Immunol 174:475–484

    PubMed  CAS  Google Scholar 

  47. Keller CC, Kremsner PG, Hittner JB, Misukonis MA, Weinberg JB, Perkins DJ (2004) Infect Immun 72:4868–4873

    Article  PubMed  CAS  Google Scholar 

  48. Prada J, Malinowsky J, Muller S, Bienzle U, Kremsner PG (1996) Am J Trop Med Hyg 54:620–624

    PubMed  CAS  Google Scholar 

  49. Tenhunen R, Marver RS (1969) J Biol Chem 244:6388–6394

    PubMed  CAS  Google Scholar 

  50. Chen MM, Shi L, Sullivan DJ Jr (2001) Mol Biochem Parasitol 113:1–8

    Article  PubMed  CAS  Google Scholar 

  51. Schaefer WH, Harris TM, Guengerich FP (1985) Biochemistry 24:3254–3263

    Article  PubMed  CAS  Google Scholar 

  52. Groves JT, Haushalter RC, Nakamura M, Nemo TE, Evans BJ (1981) J Am Chem Soc 103:2884–2886

    Article  CAS  Google Scholar 

  53. Nagababu E, Rifkind JM (2004) Antioxid Redox Signal 6:967–978

    PubMed  CAS  Google Scholar 

  54. Nakamoto K (1997) In: Nakamoto K (ed) Infrared and Raman spectra of inorganic and coordination compounds part B: applications in coordination, organometallic, and bioinorganic chemistry. Wiley, New York, pp 319–377

    Google Scholar 

  55. Decatur SM, Franzen S, Depillis GD, Dyer RB, Woodruff WH, Boxer SG (1996) Biochemistry 35:4939–4944

    Article  PubMed  CAS  Google Scholar 

  56. Bohle DS, Kosar AD, Stephens PW (2003) Can J Chem 81:1285–1291

    Article  CAS  Google Scholar 

  57. Albrich JM, McCarthy CA, Hurst JK (1981) Proc Natl Acad Sci USA 78:210–214

    Article  PubMed  CAS  Google Scholar 

  58. Arese P, Schwarzer E (1997) Ann Trop Med Parasitol 91:501–516

    Article  PubMed  CAS  Google Scholar 

  59. Schwarzer E, De Matteis F, Giribaldi G, Ulliers D, Valente E, Arese P (1999) Mol Biochem Parasitol 100:61–72

    Article  PubMed  CAS  Google Scholar 

  60. Schwarzer E, Muller O, Arese P, Siems WG, Grune T (1996) FEBS Lett 388:119–122

    Article  PubMed  CAS  Google Scholar 

  61. Neely MD, Amarnath V, Weitlauf C, Montine TJ (2002) Chem Res Toxicol 15:40–47

    Article  PubMed  CAS  Google Scholar 

  62. Dianzani C, Parrini M, Ferrara C, Fantozzi R (1996) Cell Biochem Funct 14:193–200

    Article  PubMed  CAS  Google Scholar 

  63. Poli G, Schaur RJ (2000) Life 50:315–321

    PubMed  CAS  Google Scholar 

  64. Schwarzer E, Turrini F, Giribaldi G, Cappadoro M, Arese P (1993) Biochim Biophys Acta 1181:51–54

    PubMed  CAS  Google Scholar 

  65. Goldie P, Roth EF Jr, Oppenheim J, Vanderberg JP (1990) Am J Trop Med Hyg 43:584–596

    PubMed  CAS  Google Scholar 

  66. Coban C, Ishii KJ, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horri T, Akira S (2005) J Exp Med 201:19–25

    Article  PubMed  CAS  Google Scholar 

  67. Millington OR, Di Lorenzo C, Phillips RS, Garside P, Brewer JM (2006) J Biol 5:5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

D.W.W. thanks NIH for financial support through NIH (NIAID) grant 1R03AI060827. Confocal images using a Zeiss LSM 510 Meta inverted confocal microscope were performed in part through the use of the VUMC Cell Imaging Shared Resource (supported by NIH grants CA68485, DK20593, DK58404, HD15052, DK59637, and EY08126). The Wright group would also like to thank the laboratory of Virginia Shepherd for access to cell lines and experimental equipment, expert advice and helpful discussions during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Wright.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carney, C.K., Schrimpe, A.C., Halfpenny, K. et al. The basis of the immunomodulatory activity of malaria pigment (hemozoin). J Biol Inorg Chem 11, 917–929 (2006). https://doi.org/10.1007/s00775-006-0147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0147-0

Keywords

Navigation