Skip to main content
Log in

Speciation and structure of ferriprotoporphyrin IX in aqueous solution: spectroscopic and diffusion measurements demonstrate dimerization, but not μ-oxo dimer formation

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Changes in ε 393 (the Soret band) of aqueous ferriprotoporphyrin IX [Fe(III)PPIX] with concentration indicate that it dimerizes, but does not form higher aggregates. Diffusion measurements support this observation. The diffusion coefficient of aqueous Fe(III)PPIX is half that of the hydrated monomeric dicyano complex. Much of the apparent instability of aqueous Fe(III)PPIX solutions could be attributed to adsorption onto glass and plastic surfaces. However, ε 347 was found to be independent of the aggregation state of the porphyrin and was used to correct for the effects of adsorption. The UV–vis spectrum of the aqueous dimer is not consistent with that expected for a μ-oxo dimer and the 1H NMR spectrum is characteristic of five-coordinate, high-spin Fe(III)PPIX. Magnetic susceptibility measurements using the Evans method showed that there is no antiferromagnetic coupling in the dimer. By contrast, when the μ-oxo dimer is induced in 10% aqueous pyridine, characteristic UV–vis and 1H NMR spectra of this species are observed and the magnetic moment is consistent with strong antiferromagnetic coupling. We propose a model in which the spontaneously formed aqueous Fe(III)PPIX dimer involves noncovalent interaction of the unligated faces of two five-coordinate H2O/HO-Fe(III)PPIX molecules, with the axial H2O/OH ligands directed outwards. This arrangement is consistent with the crystal structures of related five-coordinate iron(III) porphyrins and accounts for the observed pH dependence of the dimerization constant and the spectra of the monomer and dimer. Structures for the aqueous dimer are proposed on the basis of molecular dynamics/simulated annealing calculations using a force field previously developed for modeling metalloporphyrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Under the conditions of this study, Cl and other potential ligands have been avoided so that the only possible axial ligand(s) are H2O/OH/O2− and Fe(III)PPIX can thus exist as hematin or its μ-oxo dimer.

Abbreviations

DMSO:

Dimethyl sulfoxide

Fe(III)PPIX:

Ferriprotoporphyrin IX

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

MD:

Molecular dynamics

MM:

Molecular mechanics

OEP:

Octaethylporphyrin

PAH:

Polyaromatic hydrocarbon

SA:

Simulated annealing

TPP:

5,10,15,20-Tetraphenylporphyrin

TpTP:

5,10,15,20-Tetra-p-tolylporphyrin

References

  1. Shack J, Clarke WM (1947) J Biol Chem 171:143–187

    CAS  Google Scholar 

  2. Brown SB, Jones P, Lantzke IR (1969) Nature 223:960–961

    Article  PubMed  CAS  Google Scholar 

  3. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, Balla G (2002) Blood 100:879–887

    Article  PubMed  CAS  Google Scholar 

  4. Larsson SC, Adami H-O, Giovannucci E, Wolk A (2005) J Natl Cancer Inst 97:232–233

    Article  PubMed  CAS  Google Scholar 

  5. Pierre F, Tache S, Petit CR, Van der Meer R, Corpet DE (2003) Carcinogenesis 24:1683–1690

    Article  PubMed  CAS  Google Scholar 

  6. Kumar S, Bandyopadhyay U (2005) Toxicol Lett 157:175–188

    Article  PubMed  CAS  Google Scholar 

  7. Oliveira MF, Silva JR, Dansa-Petretski M, de Souza W, Lins U, Braga CMS, Masuda H, Oliveira PL (1999) Nature 400:517–518

    Article  PubMed  CAS  Google Scholar 

  8. Oliveira M, d’Avila JCP, Torres CR, Oliveira PL, Tempone AJ, Rumjanek FD, Braga CMS, Silva JR, Dansa-Petretski M, Oliveira MA, de Souza W, Ferreira ST (2000) Mol Biochem Parasitol 111:217–221

    Article  PubMed  CAS  Google Scholar 

  9. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) Nature 404:307–310

    Article  PubMed  CAS  Google Scholar 

  10. Egan TJ, Combrinck JM, Egan J, Hearne GR, Marques HM, Ntenteni S, Sewell BT, Smith PJ, Taylor D, van Schalkwyk DA, Walden JC (2002) Biochem J 365:343–347

    Article  PubMed  CAS  Google Scholar 

  11. Slater AFG, Cerami A (1992) Nature 355:167–169

    Article  PubMed  CAS  Google Scholar 

  12. Sullivan DJ, Gluzman IY, Goldberg DE (1996) Science 271:219–222

    Article  PubMed  CAS  Google Scholar 

  13. Bendrat K, Berger BJ, Cerami A (1995) Nature 378:138–139

    Article  PubMed  CAS  Google Scholar 

  14. Fitch CD, Cai G-Z, Chen Y-F, Shoemaker JD (1999) Biochim Biophys Acta 1454:31–37

    PubMed  CAS  Google Scholar 

  15. Dorn A, Stoffel R, Matile H, Bubendorf A, Ridley RG (1995) Nature 374:269–271

    Article  PubMed  CAS  Google Scholar 

  16. Egan TJ (2004) Drug Des Rev Online 1:93–110

    Article  CAS  Google Scholar 

  17. Biot C, Taramelli D, Forfar-Bares I, Maciejewski LA, Boyce M, Nowogrocki G, Brocard JS, Basilico N, Olliaro P, Egan TJ (2005) Mol Pharm 2:185–193

    Article  PubMed  CAS  Google Scholar 

  18. O’ Neill PM, Mukhtar A, Stocks PA, Randle LE, Hindley S, Ward SA, Storr RC, Bickley JF, O’Neil IA, Maggs JL, Hughes RH, Winstanley PA, Bray PG, Park BK (2003) J Med Chem 46:4933–4945

    Article  CAS  Google Scholar 

  19. Vippagunta SR, Dorn A, Matile H, Bhattacharjee AK, Karle JM, Ellis WY, Ridley RG, Vennerstrom JL (1999) J Med Chem 42:4630–4639

    Article  PubMed  CAS  Google Scholar 

  20. Egan TJ, Hunter R, Kaschula CH, Marques HM, Misplon A, Walden JC (2000) J Med Chem 43:283–291

    Article  PubMed  CAS  Google Scholar 

  21. Portela C, Afonso CMM, Pinto MMM, Ramos MJ (2003) FEBS Lett 547:217–222

    Article  PubMed  CAS  Google Scholar 

  22. Portela C, Afonso CMM, Pinto MMM, Ramos MJ (2004) Bioorg Med Chem 12:3313–3321

    Article  PubMed  CAS  Google Scholar 

  23. Leed A, DuBay K, Ursos LMB, Sears D, de Dios AC, Roepe PD (2002) Biochemistry 41:10245–10255

    Article  PubMed  CAS  Google Scholar 

  24. de Dios AC, Casabianca LB, Kosar AD, Roepe PD (2004) Inorg Chem 43:8078–8084

    Article  PubMed  CAS  Google Scholar 

  25. Davies TH (1940) J Biol Chem 135:597–622

    CAS  Google Scholar 

  26. Brown SB, Dean TC, Jones P (1970) Biochem J 117:733–739

    PubMed  CAS  Google Scholar 

  27. O’ Keeffe DH, Barlow CH, Smythe GA, Fuchsman WH, Moss TH, Lilienthal HR, Caughey WS (1975) Bioinorg Chem 5:125–147

    Article  Google Scholar 

  28. Marques HM (1991) Inorg Chim Acta 190:291–295

    Article  CAS  Google Scholar 

  29. Linder PW, Nassimbeni LR, Polson A, Rodgers AL (1976) J Chem Educ 53:330–332

    CAS  Google Scholar 

  30. Crawford TH, Swanson J (1971) J Chem Educ 48:382–386

    Article  CAS  Google Scholar 

  31. Weast RC (ed) (1980–1981) CRC handbook of chemistry and physics. CRC, Boca Raton

  32. Allinger NL (1977) J Am Chem Soc 99:8127–8134

    Article  CAS  Google Scholar 

  33. Hyperchem. Hypercube, Gainesville

  34. Munro OQ, Bradley JC, Hancock RD, Marques HM, Marsicano F, Wade PW (1992) J Am Chem Soc 114:7218–7230

    Article  CAS  Google Scholar 

  35. Marques HM, Munro OQ, Grimmer NE, Levendis DC, Marsicano F, Pattrick G, Markoulides T (1995) J Chem Soc Faraday Trans 91:1741–1749

    Article  CAS  Google Scholar 

  36. Scheidt WR, Lee YJ (1987) Struct Bonding 64:1–70

    Article  CAS  Google Scholar 

  37. Levine IR (2002) Physical chemistry. McGraw-Hill, New York

    Google Scholar 

  38. Christian G (1994) Analytical chemistry. Wiley, New York

    Google Scholar 

  39. Egan TJ, Mavuso WW, Ross DC, Marques HM (1997) J Inorg Biochem 68:137–145

    Article  PubMed  CAS  Google Scholar 

  40. Egan TJ, Hempelmann E, Mavuso WW (1999) J Inorg Biochem 73:101–107

    Article  PubMed  CAS  Google Scholar 

  41. Kaschula CH, Egan TJ, Hunter R, Basilico N, Parapini S, Taramelli D, Pasini E, Monti D (2002) J Med Chem 45:3531–3539

    Article  PubMed  CAS  Google Scholar 

  42. Egan TJ, Ncokazi KK (2004) J Inorg Biochem 98:144–152

    Article  PubMed  CAS  Google Scholar 

  43. Collier GS, Pratt JM, De Wet CR, Tshabalala CF (1979) Biochem J 179:281

    PubMed  CAS  Google Scholar 

  44. Gustafson KE, Dickhut RM (1994) J Chem Eng Data 39:281–285

    Article  CAS  Google Scholar 

  45. Budd DL, Le Mar GN, Langry KC, Smith KM, Nayyir-Mazhir R (1979) J Am Chem Soc 101:6091–6096

    Article  CAS  Google Scholar 

  46. Evans DF (1959) J Chem Soc 2003–2005

  47. Fleischer EB, Srivastava TS (1969) J Am Chem Soc 91:2403–2405

    Article  CAS  Google Scholar 

  48. Koenig DF (1965) Acta Crystallogr 18:663–673

    Article  PubMed  CAS  Google Scholar 

  49. Cheng B, Safo MK, Orosz RD, Reed CA, Debrunner PG, Scheidt WR (1994) Inorg Chem 33:1319–1324

    Article  CAS  Google Scholar 

  50. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  51. Cambridge Structural Database and Cambridge Structural Database System V S26, Nov 2004. Cambridge Crystallographic Data Centre, Cambridge

  52. Atwood J, Barbour L (2003) Cryst Growth Des 3:3–8

    Article  CAS  Google Scholar 

  53. Senge MO (2000) In: Kadish KM, Smith KM, Guilard R (eds) Highly substituted porphyrins. Academic, San Diego, pp 239–347

  54. Jentzen W, Medforth CJ, Smith KM, Veyrat M, Mazzanti M, Ramasseul R, Marchon J-C, Takeuchi T, Goddard WA, Shellnutt JA (1995) J Am Chem Soc 117:11085

    Article  CAS  Google Scholar 

  55. Phillippi MA, Baenziger N, Goff HM (1981) Inorg Chem 20:3904–3911

    Article  CAS  Google Scholar 

  56. Cocolios P, Lagrange G, Guilard R, Oumous H, Lecomte C (1984) J Chem Soc Dalton Trans 567–574

  57. Oumous H, Lecomte C, Protas J, Cocolios P, Guilard R (1984) Polyhedron 3:651–659

    Article  CAS  Google Scholar 

  58. Naiyin L, Levendis DC, Coppens P, Kastner ME, Carruth LE, Scheidt WR (1987) Acta Crystallogr Sect C 43:1835–1838

    Article  Google Scholar 

  59. Hoard JL, Hamor MJ, Hamor TA, Caughey WS (1965) J Am Chem Soc 87:2312–2319

    Article  CAS  Google Scholar 

  60. Lecomte C, Chadwick DL, Coppens P, Stevens ED (1983) Inorg Chem 22:2982–2992

    Article  CAS  Google Scholar 

  61. Hatano K, Uno T (1990) Bull Chem Soc Jpn 63:1825–1827

    Article  CAS  Google Scholar 

  62. Scheidt WR, Finnegan MG (1989) Acta Crystallogr Sect C 45:1214–1216

    Article  Google Scholar 

  63. Skelton BW, White AH (1977) Aust J Chem 30:2655–2660

    Article  CAS  Google Scholar 

  64. Hatano K, Scheidt WR (1979) Inorg Chem 18:877–879

    Article  CAS  Google Scholar 

  65. Einstein FWB, Willis AC (1978) Inorg Chem 17:3040–3045

    Article  CAS  Google Scholar 

  66. Gans P, Buisson G, Duee E, Regnard JR, Marchon JC (1979) J Chem Soc Chem Commun 393–395

  67. Scheidt WR, Cohen IA, Kastner ME (1979) Biochemistry 18:3546–3552

    Article  PubMed  CAS  Google Scholar 

  68. Korber FCF, Lindsay Smith JR, Prince S, Rizkallah P, Reynolds CD, Shawcross DR (1991) J Chem Soc Dalton Trans 3291–3294

  69. La T, Miskelly GM, Bau R (1997) Inorg Chem 36:5321–5328

    Article  CAS  Google Scholar 

  70. Mazumdar S, Mitra S (1990) J Phys Chem 94:561–566

    Article  CAS  Google Scholar 

  71. Shellnutt JA (2000) Highly substituted porphyrins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 7. Academic, San Diego, pp 167–223

  72. Neal TJ, Cheng B, Ma J-G, Shellnutt JA, Schulz CE, Scheidt WR (1999) Inorg Chim Acta 291:49–59

    Article  CAS  Google Scholar 

  73. Blauer G, Zvilichovsky B (1968) Arch Biochem Biophys 127:749–755

    Article  PubMed  CAS  Google Scholar 

  74. Srinivas V, Rao CM (1990) Biochem Int 21:849–855

    PubMed  CAS  Google Scholar 

  75. Kuzelova K, Mrhalova M, Hrkal Z (1997) Biochim Biophys Acta 1336:497–501

    PubMed  CAS  Google Scholar 

  76. Moreau S, Perly B, Biguet J (1982) Biochimie 64:1015–1025

    Article  PubMed  CAS  Google Scholar 

  77. Cowgill RW, Clark WM (1952) J Biol Chem 198:33–61

    PubMed  CAS  Google Scholar 

  78. Graf W, Pommerening K, Scheler W (1971) Acta Biol Med Ger 26:895–909

    PubMed  CAS  Google Scholar 

  79. Constantinidis I, Satterlee JD (1988) J Am Chem Soc 110:4391–4395

    Article  CAS  Google Scholar 

  80. Dascombe MJ, Drew MGB, Morris H, Wilairat P, Auparakkitanon S, Moule WA, Alizadeh-Shekalgourabi S, Evans PG, Lloyd M, Dyas AM, Carr P, Ismail FMD (2005) J Med Chem 48:5423–5436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported in part by the National Research Foundation under grant number 2069079. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Research Foundation. We also acknowledge the Medical Research Council of South Africa, the University of Cape Town and the University of the Witwatersrand for financial support. K.A.dV further acknowledges the Department of Chemistry, University of Cape Town Equity Development Program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Egan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Villiers, K.A., Kaschula, C.H., Egan, T.J. et al. Speciation and structure of ferriprotoporphyrin IX in aqueous solution: spectroscopic and diffusion measurements demonstrate dimerization, but not μ-oxo dimer formation. J Biol Inorg Chem 12, 101–117 (2007). https://doi.org/10.1007/s00775-006-0170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0170-1

Keywords

Navigation