Skip to main content

Advertisement

Log in

Mobilization of storage iron is reflected in the iron isotopic composition of blood in humans

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We recently showed in an animal model that iron isotopic composition varies substantially between different organs. For instance, iron in ferritin-rich organs—such as the major storage tissues liver, spleen, and bone marrow—contain a larger fraction of the heavy iron isotopes compared with other tissues, including blood. As a consequence, partitioning of body iron into red blood cells and storage compartments should be reflected in the isotopic pattern of blood iron. To confirm this hypothesis, we monitored blood iron isotope patterns in iron-overloaded subjects undergoing phlebotomy treatment by multicollector inductively coupled plasma mass spectrometry. We found that bloodletting and consequential replacement of lost blood iron by storage iron led to a substantial increase of the heavy isotope fraction in the blood. The progress of iron depletion therapy and blood loss was quantitatively traceable by isotopic shifts of as much as +1‰ in δ(56Fe). These results show that—together with iron absorption efficiency—partitioning of iron between blood and iron storage tissues is an important determinant of blood iron isotopic patterns, which could make blood iron isotopic composition the first composite measure of iron metabolism in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brittenham GM (1994) In: Brock HJ, Halliday JW, Pippard MJ, Powell LW (eds) Iron metabolism in health and disease. Saunders, London, pp 31–62

  2. Andrews NC (2000) Annu Rev Genomics Hum Genet 1:75–98

    Article  PubMed  CAS  Google Scholar 

  3. Barton JC, McDonnell SM, Adams PC, Brissot P, Powell LW, Edwards CQ, Cook JC, Kowdley KV (1998) Ann Intern Med 129:932–939

    PubMed  CAS  Google Scholar 

  4. Walczyk T, von Blanckenburg F (2002) Science 295:2065–2066

    Article  PubMed  CAS  Google Scholar 

  5. Walczyk T, von Blanckenburg F (2005) Int J Mass Spectrom 242:117–134

    Article  CAS  Google Scholar 

  6. Taylor PDP, Maeck R, Debievre P (1992) Int J Mass Spectrom 121:111–125

    Article  CAS  Google Scholar 

  7. Albarede F, Beard B (2004) Rev Mineral Geochem 55:113–152

    Article  CAS  Google Scholar 

  8. Schauble EA (2004) Rev Mineral Geochem 55:65–111

    Article  CAS  Google Scholar 

  9. Young ED, Galy A, Nagahara H (2002) Geochim Cosmochim Acta 66:1095–1104

    Article  CAS  Google Scholar 

  10. Guelke M, von Blanckenburg F (2007) Environ Sci Technol 41:1896–1901

    Article  PubMed  CAS  Google Scholar 

  11. Hotz K, Augsburger H, Walczyk T (2001) J Anal At Spectrom. doi:10.1039/c1030ja00195c

  12. Johnson CM, Beard BL, Albarède F (2004) Rev Mineral Geochem 55:1–24

    Article  CAS  Google Scholar 

  13. Rayleigh L (1902) Philos Mag 4:521–537

    CAS  Google Scholar 

  14. Schoenberg R, von Blanckenburg F (2005) Int J Mass Spectrom 242:257–272

    Article  CAS  Google Scholar 

  15. Weyer S, Schwieters J (2003) Int J Mass Spectrom 226:355–368

    Article  CAS  Google Scholar 

  16. De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Pure Appl Chem 75:683–800

    Article  Google Scholar 

  17. Krayenbuehl PA, Walczyk T, Schoenberg R, von Blanckenburg F, Schulthess G (2005) Blood 105:3812–3816

    Article  PubMed  CAS  Google Scholar 

  18. Beutler E (2006) Annu Rev Med 57:331–347

    Article  PubMed  CAS  Google Scholar 

  19. Weintraub LR, Conrad ME, Crosby WH (1964) Blood 24:19–24

    PubMed  CAS  Google Scholar 

  20. Ohno T, Shinohara A, Kohge I, Chiba M, Hirata T (2004) Anal Sci 20:617–621

    Article  PubMed  CAS  Google Scholar 

  21. Haskins D, Stevens AR, Finch S, Finch CA (1952) J Clin Invest 31:543–547

    Article  PubMed  CAS  Google Scholar 

  22. Cook JD, Flowers CH, Skikne BS (2003) Blood 101:3359–3364

    Article  PubMed  CAS  Google Scholar 

  23. Cook JD (1999) Proc Nutr Soc 58:489–495

    Article  PubMed  CAS  Google Scholar 

  24. Finch C (1994) Blood 84:1697–1702

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank R.F. Hurrell (ETH Zurich, Switzerland) for providing the laboratory infrastructure required for this research project and for his generous advice and support, F. von Blanckenburg (Geo-Forschungs-Zentrum, Potsdam, Germany) for valuable discussions, C. Zeder (ETH Zurich, Switzerland) for his technical assistance, and M.R. Eugster (ETH Zurich, Switzerland) for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation, grant no. 3200B0-105896.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Walczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotz, K., Krayenbuehl, PA. & Walczyk, T. Mobilization of storage iron is reflected in the iron isotopic composition of blood in humans. J Biol Inorg Chem 17, 301–309 (2012). https://doi.org/10.1007/s00775-011-0851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0851-2

Keywords

Navigation